This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are intended solely for the contractual use of its customer in connection with the use of the product(s) described herein and for no other purpose. This document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever without the prior written consent of Illumina. Illumina does not convey any license under its patent, trademark, copyright, or common-law rights nor similar rights of any third parties by this document.

The Software is licensed to you under the terms and conditions of the Illumina Sequencing Software License Agreement in a separate document. If you do not agree to the terms and conditions therein, Illumina does not license the Software to you, and you should not use or install the Software. The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and understood prior to using such product(s).

FAILURE TO COMPLETELY READ AND EXPlictly FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY.

ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED HEREIN (INCLUDING PARTS THEREOF OR SOFTWARE) OR ANY USE OF SUCH PRODUCT(S) OUTSIDE THE SCOPE OF THE EXPRESS WRITTEN LICENSES OR PERMISSIONS GRANTED BY ILLUMINA IN CONNECTION WITH CUSTOMER'S ACQUISITION OF SUCH PRODUCT(S).

FOR RESEARCH USE ONLY

© 2011–2013 Illumina, Inc. All rights reserved.

Illumina, IlluminaDx, BaseSpace, BeadArray, BeadXpress, cBot, CSPro, DASL, DesignStudio, Eco, GAIx, Genetic Energy, Genome Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, Infinium, iSelect, MiSeq, Nextera, NuPCR, SeqMonitor, Solexa, TruSeq, TruSight, VeraCode, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks or registered trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners.

This software contains the SeqAn Library, which is licensed to Illumina and distributed under the following license:

Copyright © 2010, Knut Reinert, FU Berlin, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the FU Berlin or Knut Reinert nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Revision History

<table>
<thead>
<tr>
<th>Part #</th>
<th>Revision</th>
<th>Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>15027617</td>
<td>H</td>
<td>March 2013</td>
<td>Added section titled MiSeq Concepts that introduces the analysis workflow, manifest file, and sample sheet. Removed information about FASTQ file generation, manifest file formats, analysis workflow details, and sample sheet details. For information about these topics, see the MiSeq Reporter User Guide, Part # 15028784, or the MiSeq Sample Sheet Quick Reference Guide, Part # 15028392. Removed instructions for preparing custom primers. For more information, see Using Custom Primers on the MiSeq, Part # 15041638.</td>
</tr>
<tr>
<td>15027617</td>
<td>G</td>
<td>January 2013</td>
<td>Removed instructions for denaturing and diluting DNA libraries and preparing an Illumina PhiX control. See Preparing DNA Libraries for Sequencing on the MiSeq, Part # 15039740. Updated instrument wash instructions to add 25 ml 10% Tween 20 to 475 ml laboratory-grade water, instead of 500 ml laboratory-grade water.</td>
</tr>
<tr>
<td>15027617</td>
<td>F</td>
<td>November 2012</td>
<td>Added the following new information: • Added kit descriptions for new MiSeq reagent kits: MiSeq Reagent Nano Kit and MiSeq Reagent Micro Kit • Added overview of flow cell types • Added description of Enrichment analysis workflow Updated the following information: • New in MCS v2.1, updated Perform Wash screen to add a post-run wash option and command to raise sippers • Updated version compatibility table to include nano and micro kit dependencies • Updated version compatibility information to include new reagent kits</td>
</tr>
<tr>
<td>Part #</td>
<td>Revision</td>
<td>Date</td>
<td>Description of Change</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>15027617</td>
<td>E</td>
<td>October 2012</td>
<td>Updated the following information:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Corrected PhiX control preparation instructions and expected cluster density of prepared PhiX control to 1000–1200 K/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Noted that the procedure for denaturing and diluting libraries, Preparing Your Libraries, does not apply to Nextera XT libraries as well as TruSeq Amplicon libraries</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Changed upgrade name from MiSeq Expansion Pack to MiSeq hardware upgrade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Add the MiSeq Reporter User Guide to Additional Resources list.</td>
</tr>
<tr>
<td>Part #</td>
<td>Revision</td>
<td>Date</td>
<td>Description of Change</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| 15027617 | D | July 2012 | Updated software descriptions to MCS v2.0.
Added the following new information:
• Added a section titled *What’s New in MCS* to describe new software features, interface changes, and workflow changes
• Added catalog number and description of the MiSeq Reagent Kit v2, 500 Cycles
• Added Version Compatibility and Requirements section
• Added description of MiSeq Expansion Pack, which is required for 14-tile dual-surface flow cell imaging
• Added description of dual-surface flow cell tile numbering
• Added the PCR Amplicon analysis workflow for Nextera XT libraries
• Added the use of 10% Tween 20 in wash procedures and expected wash volumes
• Added the reagent cartridge version to the RFID read failure procedure
Updated the following information:
• Changed reagent acronyms for IMF, CMF, and AMX to v2 reagent names IMS, CMS, and AMS, respectively
• Changed the PhiX concentration from 8 pM to 12.5 pM
• Changed the maximum recommended NaOH concentration to 1 mM in final solution
• Noted that a maintenance wash is required to remove the instrument from standby mode and begin the setup steps for a subsequent run
• Removed Sample Sheet Parameters section and sample sheet setup step in the workflow; Illumina recommends creating the sample sheet prior to sample preparation (See the *MiSeq Sample Sheet Quick Reference Guide*, Part # 15028392 and the *Illumina Experiment Manager User Guide*, Part # 15031335) |
<table>
<thead>
<tr>
<th>Part #</th>
<th>Revision</th>
<th>Date</th>
<th>Description of Change</th>
</tr>
</thead>
</table>
| 15027617 | C | April 2012 | Updated software descriptions to MCS v1.2
Added the following new procedures and sections: BaseSpace overview, Using Custom Primers, Generating FASTQ files, Troubleshooting Flow Rate Error, Performing a Volume Test, Performing a Maintenance Wash, and Idling the Instrument, which includes a standby wash.
Updated the following information:
• Updated name of Amplicon workflow to Custom Amplicon; updated name of DenovoAssembly workflow to Assembly; added GenerateFASTQ workflow
• Added descriptions of run folders and files; updated run folder naming; added output file size
• Listed genome folder as required for amplicon sequencing in Sample Sheet Parameters
• Added instructions for diluting NaOH to denature libraries
• Updated Resolving RFID Read Failure to include MiSeq Self-Service instructions
• Listed files and folders used for troubleshooting run performance |
| 15027617 | B | December 2011 | Updated software descriptions to MCS v1.1
Added information about anti-virus protection
Updated the following information:
• Instructions to resolve RFID failure
• Preparing libraries—Changed to 0.2 N NaOH
• Run folder naming convention
• Required disk space and storage capacity
• Run setup steps—Added more information to Setting Up the Sample Sheet
• Run setup steps—Added note to dispose of remaining PR2
• Analysis duration—Added when analysis exceeds two hours
• Analysis Input Requirements—Listed manifest files as required for TruSeq Custom Amplicon libraries
• Corrected HT1 tube size in MiSeq Reagent Kit Contents
• Changed iCom references to MyIllumina |
| 15027617 | A | September 2011 | Initial release |
Table of Contents

Revision History .. iii
Table of Contents ... vii

Chapter 1 Getting Started ... 1
 - Introduction ... 2
 - Components ... 5
 - MiSeq Reagent Kits ... 10
 - Kit Contents and Storage Requirements .. 12
 - Flow Cell Types .. 14
 - Version Compatibility and Requirements .. 15
 - User-Supplied Consumables ... 16
 - Anti-Virus Software ... 17
 - Starting the MiSeq ... 18

Chapter 2 MiSeq Software .. 19
 - Introduction ... 20
 - MiSeq Concepts .. 21
 - Welcome Screen .. 22
 - Perform Wash Screen ... 26
 - Manage Files Screen .. 28
 - Run Options Screen .. 30
 - Manage Instrument Screen ... 34
 - Run Setup Screens .. 38
 - Sequencing Screen ... 45
 - Run Folders ... 48
 - Run Duration ... 52
 - Required Disk Space .. 53
 - Pausing or Stopping a Run ... 54
 - Secondary Analysis Options .. 56
 - Live Help .. 59

Chapter 3 Performing a Run ... 61
 - Introduction ... 62
 - MiSeq Workflow .. 63
 - Preparing Reagents .. 65
 - Loading Sample Libraries onto Cartridge .. 67
Chapter 1 Getting Started

Introduction .. 2
Components .. 5
MiSeq Reagent Kits .. 10
Kit Contents and Storage Requirements ... 12
Flow Cell Types .. 14
Version Compatibility and Requirements ... 15
User-Supplied Consumables ... 16
Anti-Virus Software .. 17
Starting the MiSeq ... 18
Introduction

The Illumina MiSeq® System combines proven sequencing by synthesis (SBS) technology with a revolutionary workflow that enables you to go from DNA to analyzed data in as little as eight hours. The MiSeq integrates cluster generation, sequencing, and data analysis on a single instrument.

Features

- **Walkaway Automation**—After setting up your run, which includes loading the pre-filled reagent cartridge, buffer bottle, and flow cell, no additional hands-on time is required.
- **Pre-filled Reagent Cartridge**—A specially designed single-use pre-filled reagent cartridge provides reagents for cluster generation and sequencing, including paired-end sequencing reagents and indexing reagents. Integrated radio-frequency identification (RFID) tracking enables accurate consumable tracking.
- **Interface Controls**—The MiSeq Control Software (MCS) interface provides controls to configure the instrument, set up and monitor runs, and perform maintenance procedures.
- **Convenient Flow Cell Loading**—A clamping mechanism auto-positions the flow cell as it is loaded onto the instrument. Integrated radio-frequency identification (RFID) tracking enables accurate consumable tracking.
- **Innovative Fluidics Architecture**—The MiSeq fluidics system enables unmatched efficiency in chemistry cycle time during sequencing.
- **Real Time Analysis (RTA)**—Integrated primary analysis software performs real time on-instrument data analysis during the sequencing run, which includes image analysis and base calling, and saves valuable downstream analysis time.
- **MiSeq Reporter**—Integrated secondary analysis software processes data from primary analysis to perform alignment and provide information about each sample analyzed.

Additional Resources

The following documentation is available for download from the Illumina website.
<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiSeq System Site Prep Guide</td>
<td>Provides specifications for laboratory space, electrical requirements, and environmental considerations.</td>
</tr>
<tr>
<td>MiSeq System Safety and Compliance Guide</td>
<td>Provides information about instrument labeling, compliance certifications, and safety considerations.</td>
</tr>
<tr>
<td>MiSeq Workflow Quick Reference Cards</td>
<td>Provides a two-page graphical representation of the workflow for the experienced user. The quick reference cards summarize sample prep, run setup, and run monitoring, as well as provide an overview of the analysis performed by MiSeq Reporter.</td>
</tr>
<tr>
<td>Illumina Experiment Manager User Guide</td>
<td>Provides instructions for creating sample plates and sample sheets for different workflows and library types. Illumina recommends that you create your sample sheet during the sample preparation step.</td>
</tr>
<tr>
<td>MiSeq Sample Sheet Quick Reference Guide</td>
<td>Provides information about sample sheet requirements. The information in this guide is applicable whether you are creating a sample sheet manually or using the Illumina Experiment Manager.</td>
</tr>
<tr>
<td>MiSeq Reagent Prep Guide</td>
<td>Provides a description of kit contents and instructions for preparing the reagent cartridge before beginning your sequencing run.</td>
</tr>
<tr>
<td>Preparing DNA Libraries for Sequencing on the MiSeq</td>
<td>Provides instructions for denaturing and diluting prepared sample libraries prior to sequencing on the MiSeq, and preparing a PhiX control. This step applies to most library types.</td>
</tr>
<tr>
<td>Using Custom Primers on the MiSeq</td>
<td>Provides instructions for preparing and loading custom primers, and editing the samples sheet for custom primers.</td>
</tr>
<tr>
<td>MiSeq Reporter User Guide</td>
<td>Provides a comprehensive overview of analysis procedures, analysis workflows, and output files generated by MiSeq Reporter, as well as computing requirements, off-instrument installation instructions, and troubleshooting information.</td>
</tr>
<tr>
<td>MiSeq Reporter Online Help</td>
<td>Provides instructions for using the MiSeq Reporter interface.</td>
</tr>
<tr>
<td>BaseSpace Online Help</td>
<td>Provides instructions for using BaseSpace and descriptions of the graphs generated for each analysis workflow.</td>
</tr>
</tbody>
</table>
Visit the MiSeq support page on the Illumina website for access to documentation, software downloads, and frequently asked questions. To view a comprehensive list of MiSeq training courses, go to www.illumina.com/training/miseq.
Components

The MiSeq has the following exterior components:

A **Flow Cell Compartment**—Contains the flow cell stage that houses the flow cell throughout the run. The flow cell stage is controlled by motors that move the stage out of the enclosed optical module for flow cell loading, and returns it when the run begins.

B **Enclosed Optics Module**—Contains optical components that enable imaging of the flow cell.

C **Status Bar**—Uses three colors to indicate instrument status. Blue indicates the instrument is processing, orange indicates the instrument needs attention, and green indicates that the instrument is ready to begin the next run.

D **Touch Screen Monitor**—Enables on-instrument configuration and run setup using the software interface.

E **External USB Ports**—Facilitates the transfer of files and data to the instrument computer from the touch screen monitor.

F **Reagent Compartment**—Holds reagents at proper temperatures, wash solutions, and the waste bottle. The reagent compartment door is secured by a magnetic latch.

The MiSeq interface guides you through the run setup steps using the touch screen monitor. To load run components, you need to access the reagent compartment and the flow cell compartment.
Flow Cell Compartment

A Flow Cell Stage
B Flow Cell Compartment Door
C Flow Cell Latch
D Flow Cell
E Flow Cell Latch Release Button

The flow cell compartment houses the flow cell stage, thermal station, and fluidics connections to the flow cell. The flow cell stage moves in and out of the optics module and holds the flow cell, which is secured by the flow cell latch. When the flow cell latch closes, two pins near the latch hinge auto-position the flow cell.
The thermal station, located beneath the flow cell stage, controls changes in flow cell temperature required for cluster generation and sequencing.
The MiSeq flow cell is a single-use glass-based substrate on which clusters are generated and the sequencing reaction is performed.

Reagents enter the flow cell through the inlet port, pass through the single-lane imaging area, and then exit the flow cell through the outlet port. Waste exiting the flow cell is delivered to the waste bottle.

Samples are loaded onto the reagent cartridge prior to beginning the run, and then automatically transferred to the flow cell after the run begins.

During the sequencing run, the single lane is imaged in small imaging areas called tiles. All MiSeq flow cells have a single lane, but the number of tiles differ depending on the type of flow cell you are using. For more information, see *Flow Cell Types* on page 14.
The reagent compartment contains the reagent chiller, and positions for the wash buffer (PR2) bottle and the waste bottle.

During the run, the reagent chiller holds a single-use reagent cartridge. During the instrument wash, the reagent chiller holds the wash tray. The software automatically lowers sippers into each reservoir of the reagent cartridge at the appropriate time during a run depending on the process being performed.

To the right of the reagent chiller are two form-fitted slots, one for the PR2 bottle and one for the waste bottle. The sipper handle locks the bottles in place and lowers the appropriate sipper into each bottle.

Reagents are pumped through the sippers and fluidics lines, and then to the flow cell. Reagent waste is delivered to the waste bottle throughout the process.

Reagent Cartridge

The MiSeq reagent cartridge is a single-use consumable consisting of foil-sealed reservoirs pre-filled with clustering and sequencing reagents sufficient for sequencing one flow cell.
Each reservoir on the cartridge is numbered. Sample libraries are loaded onto the cartridge in position 17, which is labeled Load Samples. For more information, see Reagent Cartridge Contents on page 12.
MiSeq Reagent Kits

To perform a run on the MiSeq, you need one single-use MiSeq Reagent Kit, which is available in three kit types. Each type of MiSeq reagent kit includes a kit-specific flow cell type and reagents required for performing one run.

<table>
<thead>
<tr>
<th>Kit Type</th>
<th>Flow Cell Type</th>
<th>Available Kit Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiSeq Reagent Kit v2</td>
<td>Includes a standard (14 tile) flow cell</td>
<td>500 cycles, 300 cycles, 50 cycles</td>
</tr>
<tr>
<td>MiSeq Reagent Micro Kit v2</td>
<td>Includes a micro (4 tile) flow cell</td>
<td>300 cycles</td>
</tr>
<tr>
<td>MiSeq Reagent Nano Kit v2</td>
<td>Includes a nano (2 tile) flow cell</td>
<td>500 cycles, 300 cycles</td>
</tr>
</tbody>
</table>

The flow cell, PR2 bottle, and reagent cartridge provided in the kit use radio-frequency identification (RFID) for accurate consumable tracking and compatibility.

You must use the reagent cartridge associated with your flow cell type. If the reagent cartridge is not compatible, a message appears during the run setup steps. To proceed, you must load a compatible reagent cartridge.

Reagent Kit Sizes

Reagent kit size is measured by the number of cycles that can be performed with one kit. Possible sizes are 500 cycles, 300 cycles, and 50 cycles.

<table>
<thead>
<tr>
<th>Kit Size</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-Cycle Kit</td>
<td>Provides reagents for up to 525 cycles of sequencing, which is sufficient for up to a 251-cycle paired-end run plus two eight-cycle index reads.</td>
</tr>
<tr>
<td>300-Cycle Kit</td>
<td>Provides reagents for up to 325 cycles of sequencing, which is sufficient for up to a 151-cycle paired-end run plus two eight-cycle index reads.</td>
</tr>
<tr>
<td>50-Cycle Kit</td>
<td>Provides reagents for up to 75 cycles of sequencing, which is sufficient for up to a 26-cycle paired-end run plus two eight-cycle index reads.</td>
</tr>
</tbody>
</table>
MiSeq Reagent Kit v2

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiSeq Reagent Kit v2, 500 Cycles</td>
<td>MS-102-2003</td>
</tr>
<tr>
<td>MiSeq Reagent Kit v2, 300 Cycles</td>
<td>MS-102-2002</td>
</tr>
<tr>
<td>TG MiSeq Reagent Kit v2, 300 Cycles</td>
<td>TG-142-1003</td>
</tr>
<tr>
<td>MiSeq Reagent Kit v2, 50 Cycles</td>
<td>MS-102-2001</td>
</tr>
</tbody>
</table>

MiSeq Reagent Micro Kit v2

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiSeq Reagent Micro Kit v2, 300 Cycles</td>
<td>MS-103-1002</td>
</tr>
<tr>
<td>TG MiSeq Reagent Micro Kit v2, 300 Cycles</td>
<td>TG-142-1002</td>
</tr>
</tbody>
</table>

MiSeq Reagent Nano Kit v2

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiSeq Reagent Nano Kit v2, 500 Cycles</td>
<td>MS-103-1003</td>
</tr>
<tr>
<td>MiSeq Reagent Nano Kit v2, 300 Cycles</td>
<td>MS-103-1001</td>
</tr>
<tr>
<td>TG MiSeq Reagent Nano Kit v2, 300 Cycles</td>
<td>TG-142-1001</td>
</tr>
</tbody>
</table>
Kit Contents and Storage Requirements

Box 1: Store at -15° to -25°C

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Component</th>
<th>Storage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reagent Cartridge</td>
<td>-15° to -25°C</td>
<td>Single-use pre-filled cartridge</td>
</tr>
<tr>
<td>1</td>
<td>HT1</td>
<td>-15° to -25°C</td>
<td>5 ml tube, Hybridization Buffer</td>
</tr>
</tbody>
</table>

Box 2: Store at 2° to 8°C

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Component</th>
<th>Storage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PR2 Bottle</td>
<td>2° to 8°C</td>
<td>500 ml bottle, Incorporation Buffer</td>
</tr>
<tr>
<td>1</td>
<td>MiSeq Flow Cell</td>
<td>2° to 8°C</td>
<td>Single-use PE flow cell</td>
</tr>
</tbody>
</table>

Reagent Cartridge Contents

Figure 1 Reagent Cartridge
Table 1 Reagent Cartridge Contents

<table>
<thead>
<tr>
<th>Position</th>
<th>Reagent Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IMS</td>
<td>Incorporation Mix</td>
</tr>
<tr>
<td>2</td>
<td>SRE</td>
<td>Scan Mix</td>
</tr>
<tr>
<td>4</td>
<td>CMS</td>
<td>Cleavage Mix</td>
</tr>
<tr>
<td>5</td>
<td>AMS1</td>
<td>Amplification Mix, Read 1</td>
</tr>
<tr>
<td>6</td>
<td>AMS2</td>
<td>Amplification Mix, Read 2</td>
</tr>
<tr>
<td>7</td>
<td>LPM</td>
<td>Linearization Premix</td>
</tr>
<tr>
<td>8</td>
<td>LDR</td>
<td>Formamide</td>
</tr>
<tr>
<td>9</td>
<td>LMX1</td>
<td>Linearization Mix</td>
</tr>
<tr>
<td>10</td>
<td>LMX2</td>
<td>Read 2 Linearization Mix</td>
</tr>
<tr>
<td>11</td>
<td>RMF</td>
<td>Resynthesis Mix</td>
</tr>
<tr>
<td>12</td>
<td>HP10</td>
<td>Read 1 Primer Mix</td>
</tr>
<tr>
<td>13</td>
<td>HP12</td>
<td>Index Primer Mix</td>
</tr>
<tr>
<td>14</td>
<td>HP11</td>
<td>Read 2 Primer Mix</td>
</tr>
<tr>
<td>15</td>
<td>PW1</td>
<td>Laboratory-grade water</td>
</tr>
<tr>
<td>16</td>
<td>PW1</td>
<td>Laboratory-grade water</td>
</tr>
<tr>
<td>17</td>
<td>Empty</td>
<td>Load Samples (Reserved for sample libraries)</td>
</tr>
<tr>
<td>18</td>
<td>Empty</td>
<td>Optional use for custom Read 1 primer</td>
</tr>
<tr>
<td>19</td>
<td>Empty</td>
<td>Optional use for custom Index Read primer</td>
</tr>
<tr>
<td>20</td>
<td>Empty</td>
<td>Optional use for custom Read 2 primer</td>
</tr>
<tr>
<td>21</td>
<td>PW1</td>
<td>Laboratory-grade water</td>
</tr>
<tr>
<td>22</td>
<td>Empty</td>
<td>Empty</td>
</tr>
</tbody>
</table>

NOTE

For more information about using custom primers on the MiSeq reagent cartridge, see *Using Custom Primers on the MiSeq*, Part # 15041638.
Flow Cell Types

The flow cell is immersed in storage buffer in a flow cell container. The flow cell container cap color indicates the flow cell type:

- **Clear cap**—Cap color for a standard (14 tile) flow cell.
- **Green cap**—Cap color for a micro (4 tile) flow cell.
- **Yellow cap**—Cap color for a nano (2 tile) flow cell.

Flow cell types differ in output and number of tiles imaged. Dual-surface imaging, which is possible on the standard and micro flow cells, doubles the number of tiles imaged.

Flow cell output depends on the number of reads possible from each flow cell. Reads are measured as the number of clusters passing filter.

Flow Cell Output

<table>
<thead>
<tr>
<th>Flow Cell</th>
<th># of Reads</th>
<th>Kit Size (Cycles)</th>
<th>Output (Max.)</th>
<th>2 x 75 Output</th>
<th>2 x 150 Output</th>
<th>2 x 250 Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Flow Cell</td>
<td>15 M</td>
<td>50, 300, 500</td>
<td>7.5 Gb</td>
<td>2.25 Gb</td>
<td>4.5 Gb</td>
<td>7.5 Gb</td>
</tr>
<tr>
<td>Micro Flow Cell</td>
<td>4 M</td>
<td>300</td>
<td>1.2 Gb</td>
<td>600 Mb</td>
<td>1.2 Gb</td>
<td>--</td>
</tr>
<tr>
<td>Nano Flow Cell</td>
<td>1 M</td>
<td>300, 500</td>
<td>500 Mb</td>
<td>150 Mb</td>
<td>300 Mb</td>
<td>500 Mb</td>
</tr>
</tbody>
</table>

Flow Cell Tiles

<table>
<thead>
<tr>
<th>Flow Cell</th>
<th>Tiles</th>
<th>Imaging Surface</th>
<th>Total Tiles Imaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Flow Cell</td>
<td>14 tiles</td>
<td>Top and bottom</td>
<td>28 tiles total</td>
</tr>
<tr>
<td>Micro Flow Cell</td>
<td>4 tiles</td>
<td>Top and bottom</td>
<td>8 tiles total</td>
</tr>
<tr>
<td>Nano Flow Cell</td>
<td>2 tiles</td>
<td>Top only</td>
<td>2 tiles total</td>
</tr>
</tbody>
</table>
Version Compatibility and Requirements

The following table lists version compatibility of MiSeq reagents, MiSeq Control Software (MCS), and supported read lengths.

<table>
<thead>
<tr>
<th>MiSeq Reagent Kit Version</th>
<th>MCS Version</th>
<th>Read Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiSeq Reagent Kit v2</td>
<td>MCS v2.0 or later</td>
<td>Up to 2 x 251 cycles</td>
</tr>
<tr>
<td>MiSeq Reagent Micro Kit v2</td>
<td>MCS v2.1 or later</td>
<td>Up to 2 x 151 cycles</td>
</tr>
<tr>
<td>MiSeq Reagent Nano Kit v2</td>
<td>MCS v2.0 or later</td>
<td>Up to 2 x 251 cycles</td>
</tr>
</tbody>
</table>

The following table lists requirements specific to workflow enhancements and components introduced in MCS v2.0 and MCS v2.1.

<table>
<thead>
<tr>
<th>Workflow Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 251 cycle runs</td>
<td>• MCS v2.0 or later</td>
</tr>
<tr>
<td>Imaging of 14 tiles on a standard flow cell</td>
<td>• MCS v2.0 or later</td>
</tr>
<tr>
<td></td>
<td>• MiSeq Reagent Kit v2, 500 Cycles</td>
</tr>
<tr>
<td>Dual-surface flow cell imaging</td>
<td>• MCS v2.0 or later</td>
</tr>
<tr>
<td></td>
<td>• MiSeq Reagent Kit v2</td>
</tr>
<tr>
<td>Sequencing on a micro flow cell</td>
<td>• MCS v2.1 or later</td>
</tr>
<tr>
<td>(four-tile dual-surface imaging)</td>
<td>• MiSeq Micro Reagent Kit v2</td>
</tr>
<tr>
<td>Sequencing on a nano flow cell</td>
<td>• MCS v2.0 or later</td>
</tr>
<tr>
<td>(two-tile single-surface imaging)</td>
<td>• MiSeq Nano Reagent Kit v2</td>
</tr>
</tbody>
</table>
User-Supplied Consumables

Make sure the following user-supplied consumables are available before beginning a run.

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Supplier</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 N NaOH</td>
<td>General lab supplier</td>
<td>Denaturing sample libraries Denaturing sample libraries and PhiX control DNA</td>
</tr>
<tr>
<td>Alcohol wipes, 70% Isopropyl or Ethanol, 70%</td>
<td>VWR, catalog # 15648-981*</td>
<td>Cleaning the flow cell holder</td>
</tr>
<tr>
<td>Disposable gloves, powder-free</td>
<td>General lab supplier</td>
<td>General use</td>
</tr>
<tr>
<td>Lab tissue, low-lint</td>
<td>VWR, catalog # 21905-026*</td>
<td>Cleaning the flow cell stage</td>
</tr>
<tr>
<td>Lens paper, 4 x 6 in.</td>
<td>VWR, catalog # 52846-001*</td>
<td>Cleaning the flow cell</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma-Aldrich, catalog # P7949</td>
<td>Washing the instrument</td>
</tr>
<tr>
<td>Tweezers, square-tip plastic (optional)</td>
<td>McMaster-Carr, catalog # 7003A22*</td>
<td>Removing flow cell from flow cell shipping container</td>
</tr>
<tr>
<td>Water, laboratory-grade</td>
<td>General lab supplier</td>
<td>Washing the instrument</td>
</tr>
</tbody>
</table>

* or equivalent

Guidelines for Laboratory-Grade Water

Always use laboratory-grade water to perform instrument procedures. Never use tap water or deionized water. Any of the following are acceptable examples:

- Illumina PW1
- 18 Megohm (MΩ) water
- Milli-Q water
- Super-Q water
- Molecular biology-grade water
Anti-Virus Software

Illumina strongly recommends that you purchase and install the anti-virus software of your choice to protect the computer against viruses.

To avoid interfering with MiSeq operation or losing data, configure the anti-virus software updates as follows:
- Set for manual scans, not automatic scans.
- Perform scans only when the instrument is not in use.
- Set updates to download but not install without user authorization.
- Do not automatically reboot the computer upon update.
- Exclude the data drive and application directory from any real-time file system protection.
Starting the MiSeq

NOTE
It is best to leave the instrument on at all times. However, if the instrument must be turned off follow the shut down procedure described in *Shutting Down the Instrument* on page 89, and then wait a *minimum* of 60 seconds before turning the power switch back to the ON position.

1. If the MiSeq is not already on, reach around the right side of the instrument to locate the power switch on the back panel. It is in the lower corner directly above the power cord.

 Figure 2 Power Switch Location

2. Turn the power switch to the **ON** position. The integrated instrument computer starts. It might take several seconds before the touch screen shows activity.

3. Log in to the operating system using the default user name and password:
 - User name: sbsuser
 - Password: sbs123
 Wait until the operating system has finished loading. When the system is ready, the MiSeq Control Software (MCS) launches and initializes the system automatically. After initialization is complete, the Welcome screen appears.
Chapter 2

MiSeq Software

Introduction ... 20
MiSeq Concepts .. 21
Welcome Screen .. 22
Perform Wash Screen ... 26
Manage Files Screen .. 28
Run Options Screen ... 30
Manage Instrument Screen .. 34
Run Setup Screens ... 38
Sequencing Screen ... 45
Run Folders ... 48
Run Duration .. 52
Required Disk Space .. 53
Pausing or Stopping a Run .. 54
Secondary Analysis Options ... 56
Live Help .. 59
Introduction

Three software applications are pre-installed on the instrument computer:

- **MiSeq Control Software (MCS)**—Controls instrument operation.
- **Real Time Analysis (RTA)**—Performs primary analysis.
- **MiSeq Reporter**—Performs secondary analysis.

Optional software used off-instrument includes the Sequencing Analysis Viewer (SAV). For more information, see *Sequencing Analysis Viewer* on page 47.

MiSeq Control Software (MCS)

The MiSeq Control Software (MCS) interface guides you through the steps to load the flow cell and reagents prior to starting the run, and then provides an overview of quality statistics that you can monitor as the run progresses.

During the run, MCS operates the flow cell stage in the enclosed optics module, gives commands to dispense reagents, changes temperatures of the flow cell, and captures images of clusters on the flow cell for image analysis. MCS performs the run according to parameters specified in the sample sheet.

Real Time Analysis (RTA)

The integrated primary analysis software, Real Time Analysis (RTA), performs image analysis and base calling, and assigns a quality score to each base for each cycle. Images are temporarily stored in the run folder for processing by RTA, and then automatically deleted when RTA analysis is complete.

MiSeq Reporter

MiSeq Reporter is the secondary analysis software on the MiSeq that processes base calls generated during primary analysis, and produces information about alignment, variants, and contig assemblies for each genome requested and each sample based on the analysis workflow specified in the sample sheet. For more information, see *MiSeq Reporter Overview* on page 57.
The following concepts and terms are common to the run setup steps on the MiSeq.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Workflow</td>
<td>A secondary analysis procedure performed by MiSeq Reporter. The analysis workflow for each run is specified in the sample sheet.</td>
</tr>
<tr>
<td>Manifest</td>
<td>The file that specifies a reference genome and targeted reference regions to be used in the alignment step. For workflows that require a manifest, the manifest file is specified in the sample sheet and copied to the manifest folder designated in MCS.</td>
</tr>
<tr>
<td>Reference Genome</td>
<td>A FASTA format file that contains the genome sequences used during analysis. For most analysis workflows, the reference genome file is specified in the sample sheet.</td>
</tr>
<tr>
<td>Run Folder</td>
<td>The folder structure populated by RTA primary analysis software (MiSeqOutput folder) or the folder populated by MiSeq Reporter (MiSeqAnalysis). For more information, see Run Folders on page 48.</td>
</tr>
<tr>
<td>Sample Sheet</td>
<td>A comma-separated values file (*.csv) that contains information required to set up and analyze a sequencing run, including a list of samples and their index sequences. The sample sheet must be provided during the run setup steps on the MiSeq. After the run begins, the sample sheet is renamed to SampleSheet.csv and copied to the run folders: MiSeqTemp, MiSeqOutput, and MiSeqAnalysis.</td>
</tr>
</tbody>
</table>

For more information about analysis workflows and manifest file formats, see the MiSeq Reporter User Guide, Part # 15028784.

For more information about sample sheets, see the MiSeq Sample Sheet Quick Reference Guide, Part # 15028392.
Welcome Screen

The MCS interface opens to the Welcome screen when the software launches.

Figure 3 Welcome Screen

- **Sequence**—This option opens a series of run setup screens that guide you through the setup steps for your run. See *Run Setup Screens* on page 38.
- **Perform Wash**—Provides options to start two types of instrument washes, either a maintenance wash or standby wash. See *Perform Wash Screen* on page 26.
- **Manage Files**—Provides controls for moving, deleting, and uploading files on the instrument computer. See *Manage Files Screen* on page 28.
- **Run Options**—Provides options for the post-run wash, changing default locations of data folders, and specifying email notification preferences. See *Run Options Screen* on page 30.
- **Manage Instrument**—Provides options to go to system settings, to perform a systems check, to manually update software, and to reboot or shut down the instrument. See *Manage Instrument Screen* on page 34.
- **Updates Available**—This option appears on the Welcome screen only if a software update is available. Your MiSeq must be connected to a network with internet access to enable this option. See *Software Updates* on page 24.
Activity Indicators

A series of icons are located in the lower-right corner of each interface screen. Each icon is an activity indicator that shows which activity the instrument is performing.

From left to right, the activity indicators represent the following activities:
- Moving the Y-stage
- Moving the Z-stage
- Activating electronics functionality
- Using the camera
- Pumping through the fluidics system

Sensor Indicators

Four sensor indicators are located at the base of each interface screen, each representing the status of an instrument component.

From left to right, the sensor indicators represent the following components:
- Flow cell compartment door, closed or open
- Temperature of the reagent chiller in °C
- Temperature of the flow cell in °C
- Status of BaseSpace® connection (not connected shown)

Status Icons

In the top-right corner of the Welcome screen is a status icon that signals any change in conditions during run setup or during the run.
<table>
<thead>
<tr>
<th>Status Icon</th>
<th>Status Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>Status OK</td>
<td>No change. System is normal.</td>
</tr>
<tr>
<td>🟢</td>
<td>Attention</td>
<td>Information that might require attention.</td>
</tr>
<tr>
<td>🟡</td>
<td>Warning</td>
<td>Warnings do not stop a run, but might require action before proceeding.</td>
</tr>
<tr>
<td>🔴</td>
<td>Error</td>
<td>Errors usually stop a run and generally require action before proceeding with the run.</td>
</tr>
</tbody>
</table>

When a change in condition occurs, the icon changes to the associated image and blinks to alert you. If this happens, select the icon to open the status window, which contains a general description of the condition.

- Select any item listed to see a detailed description of the condition and instructions to resolve the condition, if applicable.
- Select **Acknowledge** to accept the message and **Close** to close the dialog box.

You can filter the types of messages that appear in the status window by selecting the icons along the top margin of the window. Selecting an icon toggles the condition to show or hide.

Software Updates

If your system is connected to a network with internet access, you can automatically update the instrument software from the Welcome screen.

When software updates are available, the Update Available button appears on the Welcome screen. Otherwise, this button is not visible.
To start a software update, select **Update Available**. A dialog box opens to confirm the command, at which time a reboot of the instrument is required. Installation of the update begins automatically upon reboot.

If your instrument is not connected to a network with internet access, you can update the software manually. For more information, see *Manual Update Screen* on page 37.
Perform Wash Screen

You can initiate three types of washes from the Perform Wash screen: maintenance wash, standby wash, and post-run wash.

- **Maintenance Wash**—The maintenance wash consists of three consecutive wash cycles that thoroughly flush the system. Perform a maintenance wash at least every 30 days. See Procedure on page 83.

- **Standby Wash**—The standby wash properly prepares the fluidics lines for sitting idle and consists of two consecutive wash cycles. Perform a standby wash if the instrument will be idle for up to seven days. See Performing a Standby Wash on page 86.

After the instrument has been placed in an idle state, you must perform a maintenance wash before beginning a new sequencing run.

- **Post-Run Wash**—The post-run wash is the standard instrument wash performed between sequencing runs and consists of a single wash cycle. If you need to perform a post-run wash at a time other than directly following a run, use the command on the Perform Wash screen to initiate the wash.

You can configure your instrument to perform a maintenance wash between runs. For more information, see Run Options Screen on page 30.

Figure 7 Perform Wash Screen
Introduced in MCS v2.1, select **Raise Sippers** to manually raise the reagent cartridge sippers. You might need to use this command if the run was interrupted unexpectedly or if an error occurred during the run, and you need to remove the reagent cartridge from the instrument. Following standard run procedures, the sippers are raised by the software at the end of the sequencing run and prior to beginning a post-run wash.
Manage Files Screen

Use the Manage Files feature to move, upload, or delete files on the instrument computer. The screen is divided into five tabs: Runs, Sample Sheets, Manifests, Genomes, and Recipes.

Figure 8 Manage Files Screen

Manage Files Options

From any tab on the Manage Files screen, select **Browse** to view files located in folders other than those currently selected.

<table>
<thead>
<tr>
<th>Tab</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runs</td>
<td>Delete or Move</td>
</tr>
<tr>
<td>Sample Sheets</td>
<td>Delete, Upload, or Rename</td>
</tr>
<tr>
<td>Manifests</td>
<td>Delete or Upload</td>
</tr>
<tr>
<td>Genomes</td>
<td>Delete or Upload</td>
</tr>
<tr>
<td>Recipes</td>
<td>Delete or Upload</td>
</tr>
</tbody>
</table>
- **Delete**—Select the checkbox next to the file or folder listed, and then select **Delete**. The Delete feature is available on all tabs.
- **Move**—Available only for run folders. Select the checkbox next to the folder name, select **Move**, and then browse to an appropriate location. **Move** will *copy* the run folder to the new location and then *delete* the folder from the old location.
- **Select All Files**—Select the checkbox to the left of the Delete button, and then select an action: **Delete** or **Move**. The action is applied to all files or folders.
- **Upload Files**—Available for sample sheets, manifests, genomes, and recipes. If the MiSeq is not connected to a network, use this feature to upload files to the instrument computer from a USB drive. Select **Upload** and browse to the location on a USB drive where the file resides. The file is uploaded to the folder indicated in the Directory field.
- **Rename**—Available only for sample sheets. Select the checkbox next to the sample sheet file, and then select **Rename**. Use the on-screen keyboard to rename the sample sheet.
Run Options Screen

The Run Options screen has three tabs for specifying the default settings for a run: Run Settings, Folder Settings, and Email Notifications.

Figure 9 Run Settings Tab on Run Options Screen

Run Settings Tab

- **Post-Run Wash Option**—An instrument wash is required after each run. You must perform a wash before the software will proceed to the run setup steps for a subsequent run. You can specify which type of wash is performed by default. A post-run wash takes about 20 minutes and a maintenance wash takes about 1 hour.

- **Send Instrument Health**—Illumina recommends selecting this option to help Illumina Technical Support in troubleshooting possible problems. The only files sent to Illumina are log files (interop files and log files). The instrument must be connected to a network with internet access to use this feature.

- **Replicate Analysis Locally**—This setting provides the option to perform analysis both locally on the instrument and in BaseSpace:
 - If you are using BaseSpace and select this option, MiSeq Reporter will launch automatically after the run and perform analysis locally.
• If you are using BaseSpace and do not select this option, MiSeq Reporter will not launch automatically after the run and analysis will only be performed in BaseSpace.

Folder Settings Tab
You can specify the default folder locations on the Folder Settings tab. For ease of access, the folders can be located on a local network or on the instrument computer.

Figure 10 Folder Settings Tab

Recipes—Sets the default location for recipes. Recipes are XML files that the software uses to perform the sequencing run. A recipe is created at the start of the run based on parameters in the sample sheet. After a run-specific recipe is created, it is copied to the output folder.

NOTE
By default, custom recipes are stored in D:\Illumina\MiSeq Control Software\CustomRecipes. MiSeq Control Software (MCS) requires two subfolders: V1 and V2. Any custom recipes created for use with the original MiSeq Reagent Kit (v1) must be placed in the V1 subfolder, and recipes created for use with the MiSeq Reagent Kit v2 must be placed in the V2 subfolder. You can browse to the custom recipes folder and create subfolders from the Manage Files screen. For more information, see Manage Files Screen on page 28.
MiSeq can be configured to send an email notification when primary analysis is complete, when on-instrument secondary analysis is complete, or if a critical MiSeq software error occurs.

Figure 11 Email Notifications Tab

- **Local SMTP email server address**—Use the on-screen keyboard to enter the local SMTP email server address. If necessary, contact the facility administrator for this information.
- **Sender email address**—Use the on-screen keyboard to enter the sender email address. This can be your email address or a different address specified for sending email
notifications. The sender email address must have the same domain name as the email server address.

- **Email addresses**—Use the on-screen keyboard to enter the email addresses of each recipient to receive notifications. Separate each email address with a comma. Select **Test** to send a test email to notification recipients.

- **Notify via email when**—Select the checkbox for each of the run events that trigger a notification.
The Manage Instrument screen contains controls for system settings, troubleshooting, manually updating software, and safely rebooting or shutting down the instrument software.

Figure 12 Manage Instrument Screen

- **System Settings**—Provides the option to change IP Settings, machine name, or domain. See *System Settings Screen* on page 35.
- **System Check**—Provides troubleshooting options for checking the operational status of instrument components. See *System Check Screen* on page 36.
- **Manual Update**—Provides the option to manually update software on the instrument computer. See *Manual Update Screen* on page 37.
- **Reboot**—Use the Reboot command to safely reboot the system software if needed for troubleshooting. There is no requirement to periodically reboot the software.
- **Shut Down**—Use the Shut Down command to safely shut down the control software and Windows on the instrument computer. See *Shutting Down the Instrument* on page 89.
- **Minimize to Windows**—Provides quick access to the instrument operating system and any folders located on the instrument computer when MCS is running in kiosk mode opposed to Windows mode.
System Settings Screen

System Settings are normally configured when the instrument is initially installed and started for the first time. If any settings need to be changed due to a network or facility change, use the System Settings feature.

Figure 13 System Settings

Contact the facility administrator to get information about what network settings to enter.

Changing System Credentials

To change the system user name and password, make the change on the Systems Settings screen. Select System Settings on the Manage Instrument screen, and then select Save and Continue to progress to the third screen in the series of screens.

Select This account. Enter the domain name (Domain\MiSeq1, for example) and password. Select Save and Continue. The credentials for MiSeq Reporter and BaseSpace are also updated.
System Check Screen

The System Check screen is typically used by an Illumina Technical Support representative during a Live Help session. Use of this feature is not required during normal operation or for instrument maintenance.

Some system checks can be performed prior to contacting Illumina Technical Support, such as the Volume Test. A volume test checks the health of the fluidics system by estimating the flow volume as bubbles pass by the sensors. This test is followed by a line wash. For more information, see Performing a Volume Test on page 98.

Upon completion of a system check, the test results appear on the screen:

- Select **Show Details** to see a summary of the results on the software interface.
- Select **Export Results** to export the results in a *.csv file format to a USB drive.
Manual Update Screen

Use the Manual Update feature to update instrument control software and analysis software from the MiSeq interface by browsing to the location of the installable software file.

Select **Browse** to browse to the location where the installable file for the new software version is located. When the path to the installable software file appears on the screen, select **Update**.

Alternatively, you can update your software automatically if your instrument is connected to a network. For more information, see *Software Updates* on page 24.
Run Setup Screens

When you select **Sequence** on the Welcome screen, a series of run setup screens open in the following order: BaseSpace Option, Load Flow Cell, Load Reagents, Review, and Pre-Run Check.

BaseSpace Options Screen

The first screen in the run setup steps provides the option to use BaseSpace for storage and analysis. To enable access, you need a network connection and a MyIllumina account. For more information, see *BaseSpace Overview* on page 56.

Figure 16 BaseSpace Options Screen

![BaseSpace Options Screen](image)

Load Flow Cell Screen

The Load Flow Cell screen prompts you to load the flow cell. After the flow cell is in place, close the flow cell latch and flow cell compartment door. Both the latch and compartment door must be closed before beginning the run.
When the flow cell is loaded, the software reads and records the RFID. A confirmation that the RFID was successfully read appears in the lower-right corner of the screen.

In the event that the RFID cannot be read, you can obtain a temporary bypass code from Illumina that enables you to proceed with the run setup steps. For more information, see Resolving RFID Read Failure on page 95.

Select the help icon in the upper-right corner of the screen. The help file contains a video that illustrates the steps for loading the flow cell.

Load Reagents Screen

The Load Reagents screen has two steps: first, load the PR2 bottle and empty waste bottle, and then load the reagent cartridge. When the PR2 bottle and reagent cartridge are loaded, the software reads and records the RFID. A confirmation that the RFID was successfully read appears in the lower-right corner of the screen.
Figure 18 Load PR2 Bottle and Waste Bottle

Figure 19 Load Reagent Cartridge
In the event that the RFID cannot be read, you can obtain a temporary bypass code from Illumina that enables you to proceed with the run setup steps. For more information, see *Resolving RFID Read Failure* on page 95.

You must use the reagent cartridge associated with the type of flow cell that you loaded. If the reagent cartridge is not compatible, a message appears on the screen. Select **Back** to load the appropriate reagent cartridge or **Exit** to return to the Welcome screen.

Select the help icon in the upper-right corner of the screen. The help file contains a video that illustrates the steps for loading the reagent cartridge and for loading the PR2 bottle.

Change Sample Sheet

Every run must have a sample sheet. By default, the software looks for a sample sheet file with a name matching the barcode number of the reagent cartridge loaded on the instrument. If a sample sheet is not found, a message appears that prompts you to browse to the location of the correct sample sheet for your run.

To prevent the software from searching unsuccessfully, use the **Change Sample Sheet** option on the Load Reagents screen to direct the software to the appropriate sample sheet.

Review Screen

The Review screen confirms that the software has located the sample sheet for the run, and lists the sample sheet name and parameters provided in the sample sheet.
Change Folders
In the lower-left corner of the Review screen, the current folder locations for recipes, sample sheets, manifests, and output folders are listed. To change folder locations, select **Change Folders** and browse to a preferred location. Using this option from the Review screen changes folder locations for the current run only.

Sample Sheet Not Found
If a sample sheet was not specified from the Load Reagents screen and the software cannot locate a sample sheet named with the barcode number of the reagent cartridge loaded for the run, a screen appears for browsing to the sample sheet associated with the run. After browsing to the sample sheet, select **Restart Check**.
Pre-Run Check Screen

The software automatically performs a pre-run check of required run components and conditions before allowing the run to begin. If any errors occur during the pre-run check, a message appears on the screen that describes the error and the action to correct it. For more information, see *Resolving Run Setup Errors* on page 93.
When the pre-run check is successful, the Start Run button becomes active.
Sequencing Screen

The Sequencing screen opens when the run begins. This screen provides a visual representation of the run in progress, including intensities and quality scores (Q-scores). For MiSeq run specifications, visit the MiSeq System specifications page on the Illumina website (www.illumina.com/systems/miseq/performance_specifications.ilmn).

Figure 23 Sequencing Screen

- **Run Progress**—Shows run progress in a status bar and lists the number of cycles completed.
- **BaseSpace User**—Shows the BaseSpace user name and shows the progress as files are uploaded to BaseSpace.
- **Intensity**—Shows the value of cluster intensities of the 90th percentile for each tile. The graphic in the Intensity area represents the number of tiles and number of surfaces being imaged:
 - If the flow cell is imaged on the top surface only, a single-column graphic appears.
 - If the flow cell is imaged on the top surface and bottom surface, a two-column graphic appears.
Q-Score All Cycles—Shows the average percentage of bases greater than Q30, which is a quality score (Q-score) measurement. A Q-score is a prediction of the probability of a wrong base call. Q-scores are calculated after cycle 25.

<table>
<thead>
<tr>
<th>Q-Score</th>
<th>Probability of Wrong Base Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q40</td>
<td>1 in 10,000</td>
</tr>
<tr>
<td>Q30</td>
<td>1 in 1,000</td>
</tr>
<tr>
<td>Q20</td>
<td>1 in 100</td>
</tr>
<tr>
<td>Q10</td>
<td>1 in 10</td>
</tr>
</tbody>
</table>

Cluster Density (K/mm²)—Shows the number of clusters per square millimeter for the run. Optimally, the cluster density should be 800K/mm². However, a range of 50K–1300K/mm² is acceptable.

Clusters Passing Filter (%)—Shows the percentage of clusters passing filter based on the Illumina chastity filter, which measures quality. This data appears only after cycle 25.

NOTE

The chastity of a base call is the ratio of the intensity of the greatest signal divided by the sum of the two greatest signals. Reads do not pass the quality filter if more than one base call has a chastity value of less than 0.6 in the first 25 cycles.

Estimated Yield (Mb)—Shows the projected number of bases called for the run, measured in megabases. This data appears only after cycle 25.

Template Generation

Real Time Analysis (RTA) uses the first four cycles of the sequencing run for template generation. Template generation is the process by which cluster positions over the entire flow cell surface are defined according to X and Y coordinate position.
After the template of cluster positions has been generated, the images produced over every subsequent cycle of imaging are aligned against the template so that individual cluster intensities in all four nucleotide color channels can be extracted, and base calls produced from the normalized cluster intensities.

Sequencing Analysis Viewer

You can monitor your run in greater detail without interfering with the run using the Illumina Sequencing Analysis Viewer (SAV). Your MiSeq must be networked to view primary analysis results with SAV.

SAV allows you to review metrics during a run as metrics are generated, and later after a run has completed. You must install SAV onto a computer independent of the MiSeq with access to the same network connected to the instrument. After launching the software, you can browse to the output folder for your run.

After cycle four following template generation, SAV provides metrics generated by RTA and organizes the metrics into plots, graphs, and tables.

NOTE
SAV is universal to Illumina sequencers, most of which use an eight-lane flow cell. Some views include drop-down lists showing lanes 1–8. The MiSeq flow cell is a single-lane flow cell, so your data appears when you select All or Lane 1.

For more information, see the Sequencing Analysis Viewer User Guide, Part # 15020619.
Run Folders

Each run on the MiSeq generates three run folders, each with a specific purpose:

- **D:\Illumina\MiSeqTemp**—When the run begins, a temporary run folder is written to the local drive of the instrument computer and used as a working area for MCS and RTA. There is no need to access the Temp folder. Contents of this folder are deleted after seven days.

- **D:\Illumina\MiSeqOutput**—RTA copies files from the Temp folder to the Output folder. As primary analysis files are generated, RTA copies files back to the Temp folder and populates the Analysis folder. Focus images and thumbnail images are not copied to the Analysis folder.

You can change the location of the output folder in the Output Folder field on the Run Options screen. For more information, see *Run Options Screen* on page 30.

- **D:\Illumina\MiSeqAnalysis**—When primary analysis is complete, MiSeq Reporter accesses the Analysis folder on the instrument local drive to begin secondary analysis. All files written to the Analysis folder are copied back to the Output folder. For more information, see *MiSeqOutput Folder Contents* on page 48.

If you are using BaseSpace for analysis without replicating analysis locally, the Analysis folder on the instrument local drive is empty.

Root Folder Naming

The root run folder name identifies the date of the run, the instrument number, and the flow cell used for the run. For any one run, each run folder has the same root folder name.

By default, the folder name uses the following format:

```
YYMMDD_<InstrumentNumber>_<Run Number>_A<FlowCellBarcode>
```

The run number increments by one each time a run is performed on a given instrument.

MiSeqOutput Folder Contents

After primary analysis, the MiSeqOutput folder is populated with files necessary for secondary analysis by MiSeq Reporter. When secondary analysis is complete, the MiSeqOutput and MiSeqAnalysis folders are identical with one exception that the MiSeqOutput folder contains two subfolders for images files: Images and Thumbnail_Images. These are not used for secondary analysis.
Files

The files that are copied to the output and analysis folders include the following:

- **SampleSheet.csv**—Provides parameters for the run and subsequent analysis. At the start of the run, the sample sheet is copied to the root folder and renamed SampleSheet.csv. Additional copies are located in Data\Intensities and Data\Intensities\BaseCalls.
- **runParameters.xml**—Contains a summary of run parameters and information about run components, such as the RFID of the flow cell and reagents associated with the run.
- **RunInfo.xml**—Contains high-level run information, such as the number of reads and cycles in the sequencing run, and whether or not a read is indexed.

Folders

The folders that are copied to the output and analysis folders include the following folders generated during the sequencing run:

- **<Run folder name>\Config**—Contains configuration files for the run.
- **<Run folder name>\Data**—Contains subfolders Intensities, BaseCalls, and Alignment. Data generated from MiSeq Reporter are located in the Alignment subfolder.
- **<Run folder name>\Data\RTA Logs**—Contains log files that describe each step performed by RTA for each Read.
- **<Run folder name>\Data\Intensities\BaseCalls**—Contains subfolders with base call (*.bcl) files, matrix files, and phasing files. MiSeq Reporter writes FASTQ files to this folder during secondary analysis. For more information, see the *MiSeq Reporter User Guide*, Part # 15028784.
- **<Run folder name>\Recipe**—Contains the recipe used for the run.
- **<Run folder name>\Logs**—Contains log files that describe every step performed by the instrument for each cycle.
- **<Run folder name>\Interop**—Contains binary files used by Sequencing Analysis Viewer (SAV) to summarize various primary analysis metrics such as cluster density, intensities, quality scores, and overall run quality.

All other files and folders created in the temporary run folder are not copied to the output and analysis folders. They contain temporary files that are not required for analysis or troubleshooting.
Additional folders, such as the Alignment folder, are added by MiSeq Reporter during secondary analysis. For more information, see the MiSeq Reporter User Guide, Part # 15028784.

Primary Analysis Results

The primary analysis output from a sequencing run is a set of quality-scored base call files (*.bcl), which are generated from the raw image files.

The following table describes the folders and files generated by Real Time Analysis (RTA) during primary analysis. Many of these files are used for secondary analysis by the MiSeq Reporter software.

<table>
<thead>
<tr>
<th>Key File</th>
<th>Subfolder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTAComplete.txt</td>
<td>Root folder</td>
<td>A marker file generated when base call analysis is complete. The presence of this file triggers the start of secondary analysis.</td>
</tr>
<tr>
<td>SampleSheet.csv</td>
<td>Root folder</td>
<td>This file is read and copied to the run folder before the run, and later used for secondary analysis.</td>
</tr>
<tr>
<td>RunInfo.xml</td>
<td>Root folder</td>
<td>Identifies the boundaries of the reads (including index reads) and the quality table selected for run.</td>
</tr>
<tr>
<td>*.bcl files</td>
<td>Data\Intensities\BaseCalls\L001\CX.X</td>
<td>Each *.bcl file contains RTA base calling and base quality scoring results for one cycle, one tile.</td>
</tr>
<tr>
<td>*.stats files</td>
<td>Data\Intensities\BaseCalls\L001\CX.X</td>
<td>*.stats files contain RTA base calling statistics for a given cycle/tile.</td>
</tr>
<tr>
<td>*.filter files</td>
<td>Data\Intensities\BaseCalls</td>
<td>*.filter files contain filter results per tile.</td>
</tr>
<tr>
<td>*.txt</td>
<td>Data\RTALogs</td>
<td>Log files from primary analysis.</td>
</tr>
<tr>
<td>*.cif files</td>
<td>Data\Intensities\L001\CX.X</td>
<td>Each binary *.cif file contains RTA image analysis results for one cycle, one tile. For more information, see Flow Cell Tile Numbering on page 51.</td>
</tr>
<tr>
<td>*.locs files</td>
<td>Data\Intensities\BaseCalls\L001</td>
<td>Reports the cluster coordinates. There is one *.locs file for each tile.</td>
</tr>
<tr>
<td>*.jpg files</td>
<td>Thumbnail_Images\L001\CX.X</td>
<td>Thumbnail images generated for each cycle and base, and can be used to troubleshoot a run. These files are not required for secondary analysis and are not copied to the Analysis folder.</td>
</tr>
</tbody>
</table>
Flow Cell Tile Numbering

When the tiles are imaged during the sequencing run, one output file is generated for each tile and named with the tile number in a four digit format.

The standard flow cell is imaged in 14 tiles on the top surface and 14 tiles on the bottom surface, which results in the following tile numbering format:

- Image files named 1101 through 1114 are tiles 1–14 on the top surface.
- Image files named 2101 through 2114 are tiles 1–14 on the bottom surface.

The same tile numbering format is used with micro flow cells:

- Image files named 1101 through 1104 are tiles 1–4 on the top surface.
- Image files named 2101 through 2104 are tiles 1–4 on the bottom surface.

For nano flow cells, image files are named for tiles one and two on the top surface, 1101 and 1102.

The output files for each tile are located in the run folder in Data\Intensities\L001.
Run Duration

Run duration depends on the number of cycles you perform. You can perform a paired-end run up to 2 x 251 sequencing cycles plus any Index Reads with MCS v2.0. Additionally, run duration depends on the version of MiSeq reagents you are using and any performance enhancing upgrades installed on your instrument. For expected durations and other specifications, visit the MiSeq System specifications page on the Illumina website (www.illumina.com/systems/miseq/performance_specifications.ilmn).

Number of Cycles in a Read

The number of cycles performed in a read is one more cycle than the number of cycles analyzed. The one extra cycle is required for phasing and prephasing calculations. For example, a paired-end 150-cycle run performs two 151-cycle reads (2 x 151) for a total of 302 cycles. At the end of the run, 2 x 150 cycles are analyzed. In this guide, read lengths are listed as the number of cycles performed including the final cycle.
Required Disk Space

The integrated instrument computer has approximately 550 GB of storage capacity. Before starting a run, the software checks available disk space. If there is not enough disk space for the run, a software prompt appears. The message indicates how much disk space is required for the run and how much disk space must be cleared before the run can proceed.

If prompted to make disk space available, go to the Welcome screen and select Manage Files. From the Manage Files screen, select the Runs tab. Move or delete older run folders as appropriate. For more information, see Manage Files Screen on page 28. After clearing adequate disk space, select Restart Check.
Pausing or Stopping a Run

The MiSeq is designed to complete a run from beginning to end without user intervention. However, it is possible to pause a run or stop a run from the Sequencing screen.

Pausing a Run

You can temporarily pause a run before it has completed using the Pause button on the Sequencing screen. You might pause a run if you suspect that the waste bottle is full or to check the volume in the PR2 bottle. You can resume a paused run.

CAUTION

Do not pause a run during cluster generation or within the first five cycles of sequencing. Runs paused prior to cycle six cannot be resumed.

When you select Pause, the current command is completed, after which the run is paused and the flow cell is placed in a safe state.

To pause a run from the Sequencing screen, select Pause. The button changes to Resume. At this point you can empty the waste bottle, for example. When you are ready to resume the run, select Resume.

Figure 24 Sequence Screen of a Paused Run
Stopping a Run

You can stop a run during sequencing before the run has completed using the **Stop** button on the Sequencing screen. You might stop a run if the run was set up incorrectly, if the data quality is bad, or if you experience a hardware error.

When a run is stopped, the current command is not completed and the flow cell stage moves to the forward position. Primary analysis will continue for the last completed cycle.

Figure 25 Stopping a Run

![Confirm message box]

Stopping a run is final. A stopped run cannot be resumed. The only option is to proceed to an instrument wash.
Secondary Analysis Options

MiSeq sequencing data can be analyzed on the instrument computer using MiSeq Reporter or on the cloud using Base Space. Both BaseSpace and MiSeq Reporter produce information about alignment, variants, and contig assemblies for each genome requested and for each sample of a multi-sample run.

BaseSpace Overview

BaseSpace is Illumina's analysis environment. Using BaseSpace to store and analyze your run data provides the following benefits:
- Eliminates the need for onsite storage and computing
- Enables web-based data management and analysis
- Provides tools for global collaboration and sharing

When setting up runs on the MiSeq, you have the option to log in to BaseSpace. When logged in to BaseSpace, raw data from the run is also stored on the instrument, or in the location of the output folder that you specified in Run Options. For more information, see Run Options Screen on page 30.
When you begin your sequencing run, the BaseSpace icon changes to indicate that the MiSeq is connected to BaseSpace and data files are being transferred to your secure location. Data files are encrypted in transit, decrypted during analysis, and encrypted again when stored.

![Connected to BaseSpace Icon](image)

BaseSpace automatically disconnects from the MiSeq at the end of the run or as soon as all primary analysis files have finished uploading. If the internet connection is interrupted, analysis files will continue uploading after the connection is restored from the point when the interruption occurred.

As soon as the last base call file is uploaded to BaseSpace, secondary analysis of your data begins. The same analysis workflows are supported on BaseSpace as with on-instrument analysis using MiSeq Reporter.

You can connect to BaseSpace at https://basespace.illumina.com. Log in using your MyIllumina account login. The first time you visit, you will be asked to accept the BaseSpace agreement. After that, you are ready to view your analysis results.

For more information about using BaseSpace, see the BaseSpace online help on the Illumina website: www.illumina.com/help/BaseSpaceHelp/BaseSpaceHelp.htm.

MiSeq Reporter Overview

MiSeq Reporter is a Windows Service application that processes base calls generated by primary analysis. MiSeq Reporter begins secondary analysis immediately after the completion of primary analysis of the sequencing run.

MiSeq Reporter runs on the instrument computer. However, the software interface must be viewed through a web browser on another computer that is connected to the same network as the MiSeq Reporter.

When secondary analysis is complete, a file named CompletedJobInfo.xml is written to the run folder. For more information, see the *MiSeq Reporter User Guide*, Part # 15028784.
Sequencing During Analysis

If a new sequencing run is started on the MiSeq before secondary analysis of an earlier run is complete, secondary analysis is stopped automatically. MiSeq computing resources are dedicated to either sequencing or analysis and the system is designed in such a way that the sequencing run setup command overrides the analysis command.

To restart secondary analysis, use the Requeue feature on the MiSeq Reporter interface after the new sequencing run is complete. At that point, secondary analysis starts from the beginning.
The MiSeq must be connected to a network with internet access to enable Live Help. The Live Help feature is an online assistance tool that enables a representative from Illumina Technical Support to view the MiSeq screen with your permission, and share control of the instrument. You have overriding control and can end the screen-sharing session at any time.

Access Live Help from the help icon on the Welcome screen.

To enable a connection, obtain a unique access code from Illumina Technical Support, enter that code on the Live Help screen, and then select Next.
Performing a Run

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>62</td>
</tr>
<tr>
<td>MiSeq Workflow</td>
<td>63</td>
</tr>
<tr>
<td>Preparing Reagents</td>
<td>65</td>
</tr>
<tr>
<td>Loading Sample Libraries onto Cartridge</td>
<td>67</td>
</tr>
<tr>
<td>Setting Up a Run Using MCS</td>
<td>68</td>
</tr>
<tr>
<td>Cleaning the Flow Cell</td>
<td>69</td>
</tr>
<tr>
<td>Loading the Flow Cell</td>
<td>71</td>
</tr>
<tr>
<td>Loading Reagents</td>
<td>73</td>
</tr>
<tr>
<td>Starting the Run</td>
<td>76</td>
</tr>
<tr>
<td>Monitoring the Run</td>
<td>77</td>
</tr>
</tbody>
</table>

MiSeq System User Guide
Introduction

To perform a run on the MiSeq, follow the setup steps described in this chapter. After the run begins, the MiSeq is completely automated and no other user intervention is required. The sequencing run can be monitored from the Sequencing screen or monitored remotely using the Sequencing Analysis Viewer (SAV), an optional software application that you can download from the Illumina website.

After the run is complete, always perform an instrument wash.
Denature and dilute libraries (does not apply to all library types). See Preparing DNA Libraries for Sequencing on the MiSeq, Part # 15039740.

Prepare the pre-filled reagent cartridge for use.

Load the library mix onto the reagent cartridge in the designated reservoir.

From the software interface, select Sequence to start the run set up steps. [Optional] Connect to BaseSpace.

Wash and thoroughly dry the flow cell.

Load the flow cell.

Load the PR2 bottle and make sure that the waste bottle is empty.

Load the reagent cartridge.

Review run parameters and pre-run check results. Select Start Run.

Monitor your run from the MCS interface or from another computer using Sequencing Analysis Viewer (SAV).

Perform a post-run wash using laboratory-grade water mixed with Tween 20.
Cluster Generation
During cluster generation, single DNA molecules are bound to the surface of the flow cell, and then bridge-amplified to form clusters.

Sequencing
Following cluster generation, clusters are imaged using LED and filter combinations specific to each of the four fluorescently-labeled dideoxynucleotides. After imaging of one tile of the flow cell is complete, the flow cell is moved into place to expose the next tile. The process is repeated for each cycle of sequencing. Following image analysis, the software performs primary analysis, which includes base calling, filtering, and quality scoring.

Analysis
When the run is complete, the Illumina Experiment Manager analysis software launches automatically to perform secondary analysis, which includes alignment and variant calling. You can monitor secondary analysis using an internet connection from another computer. For more information, see MiSeq Reporter Overview on page 57.
Preparing Reagents

The MiSeq Reagent Kit contains a tube of HT1, the reagent cartridge, and a bottle of PR2. For best results, carefully follow the reagent preparation instructions.

<table>
<thead>
<tr>
<th>Component</th>
<th>Storage</th>
<th>Preparation Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1</td>
<td>-15° to -25°C</td>
<td>Thaw for use in diluting denatured libraries, if applicable.</td>
</tr>
<tr>
<td>Reagent Cartridge</td>
<td>-15° to -25°C</td>
<td>Thoroughly thaw and inspect prior to use.</td>
</tr>
<tr>
<td>PR2 Bottle</td>
<td>2° to 8°C</td>
<td>Use directly from 2° to 8°C storage.</td>
</tr>
</tbody>
</table>

Prepare HT1

The tube of HT1 (Hybridization Buffer) is used to dilute denatured libraries prior to loading them onto the reagent cartridge for sequencing. This step does not apply to TruSeq Amplicon libraries (either Custom Amplicon or Cancer Panel) or Nextera XT libraries. For all other libraries, you need to thaw HT1.

1. Remove the tube of HT1 (Hybridization Buffer) from -15° to -25°C storage and set aside at room temperature to thaw.

2. When thawed, store at 2° to 8°C until you are ready to dilute denatured libraries. For more information, see Preparing DNA Libraries for Sequencing on the MiSeq, Part # 15039740.

Thaw Reagent Cartridge

The following instructions describe how to thaw the reagent cartridge using a room temperature water bath. This method requires approximately 1 hour.

NOTE
Alternatively, you can thaw reagents overnight in 2° to 8°C storage. Reagents are stable up to one week when stored at this temperature.

3. Remove the reagent cartridge from -15° to -25°C storage.

4. Place the reagent cartridge in a water bath containing enough room temperature deionized water to submerge the base of the reagent cartridge. Do not allow the water to exceed the maximum water line printed on the reagent cartridge.
5. Allow the reagent cartridge to thaw in the room temperature water bath for approximately 1 hour or until completely thawed.

6. Remove the cartridge from the water bath and gently tap it on the bench to dislodge water from the base of the cartridge. Dry the base of the cartridge.

Inspect the Reagent Cartridge

1. Invert the reagent cartridge ten times to mix the thawed reagents, and then visually inspect that all positions are thawed.

2. Visually inspect the reagent in position 1 to make sure that it is fully mixed and free of precipitates.

3. Gently tap the cartridge on the bench to reduce air bubbles in the reagents.

 NOTE
 The MiSeq sippers tubes go to the bottom of each reservoir to aspirate the reagents, so it is important that the reservoirs are free of air bubbles.

4. Place the reagent cartridge on ice or set aside at 2° to 8°C (up to 6 hours) until ready to set up the run. For best results, proceed directly to loading the sample and setting up the run.

 WARNING
 This set of reagents contains formamide, an aliphatic amide that is a probable reproductive toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact.

 Dispose of containers and any unused contents in accordance with applicable local governmental safety standards.

 For more information, see the MSDS for this kit, at www.illumina.com/msds.
NOTE
If required for your library type, denature and dilute libraries, and add optional PhiX v3 control. See Preparing DNA Libraries for Sequencing on the MiSeq, Part # 15039740.

This step does not apply to all library types. Some Illumina sample preparation methods result in a ready-to-use normalized concentration of pooled libraries. Refer to the sample preparation guide for the kit used to prepare sample libraries.

NOTE
If you are using custom primers, prepare primers and set up the sample sheet as described in Using Custom Primers on the MiSeq, Part # 15041638.

When the reagent cartridge is fully thawed and ready for use, you are ready to load prepared libraries onto the cartridge.

1. Use a clean 1 ml pipette tip to pierce the foil seal over the reservoir labeled **Load Samples**.

 NOTE
 Do not pierce any other reagent positions. Other reagent positions are pierced automatically during the sequencing run.

2. Pipette 600 µl of prepared libraries into the **Load Samples** reservoir. Avoid touching the foil seal as you dispense the sample.

 ![Figure 31 Load Libraries](image)

3. Proceed directly to the run setup steps using the MiSeq Control Software (MCS) interface.
Setting Up a Run Using MCS

1. [Optional] From the Run Options screen, check the folder locations for recipes, sample sheets, manifests, and the MiSeqOutput folder. For more information, see Run Options Screen on page 30.

2. From the Welcome screen, select Sequence to begin the run set up steps. The BaseSpace Options screen opens.

Set BaseSpace Option

The first screen in the run setup steps provides the option to use BaseSpace for storage and analysis. To enable access, you need a network connection.

1. From the BaseSpace Options screen, do one of the following:
 a. Select the checkbox Use BaseSpace for storage and analysis. Analysis will be performed in BaseSpace
 b. Clear the checkbox Use BaseSpace for storage and analysis. Analysis will be performed on the instrument.

2. Select Next. The Load Flow Cell screen opens.
Cleaning the Flow Cell

The flow cell is immersed in storage buffer in a flow cell container. The cap color of the flow cell container indicates the flow cell type:
- The standard (14 tile) flow cell container cap is clear.
- The micro (4 tile) flow cell container cap is green.
- The nano (2 tile) flow cell container cap is yellow.

1. Put on a new pair of powder-free gloves.

2. Using plastic forceps, grip the flow cell by the base of the plastic cartridge and remove it from the flow cell container.

Figure 32 Remove Flow Cell

3. Lightly rinse the flow cell with laboratory-grade water, making sure that both the glass and plastic cartridge are thoroughly rinsed of excess salts. Excess salts can affect flow cell seating on the instrument. If salts dry in the imaging area, imaging can also be affected.

Figure 33 Rinse Flow Cell
4 Using care around the black flow cell port gasket (outlined in orange in the illustration below), thoroughly dry the flow cell and cartridge using a lint-free lens cleaning tissue. Gently pat dry in the area of the gasket and adjacent glass.

Figure 34 Flow Cell Ports and Gasket

5 Using an alcohol wipe, clean the flow cell glass, making sure that the glass is free of streaks and fingerprints, and that the flow cell is completely free of lint or tissue fibers. Avoid using the alcohol wipe on the flow cell port gasket.

Figure 35 Dry Flow Cell

6 Dry any excess alcohol with a lint-free lens cleaning tissue, and visually inspect to make sure that the flow cell ports are free of obstructions and that the gasket is well-seated around the flow cell ports. If the gasket appear to be dislodged, gently press it back into place until it sits securely around the flow cell ports.
Loading the Flow Cell

1. Raise the flow cell compartment door, and then press the release button to the right of the flow cell latch. The flow cell latch opens.

 Figure 36 Open Flow Cell Latch

2. Visually inspect the flow cell stage to make sure it is free of lint. If lint or other debris is present, clean the flow cell stage using an alcohol wipe or a lint-free tissue moistened with ethanol or isopropanol. Carefully wipe the surface of the flow cell stage until it is clean and dry.

3. Hold the flow cell by the edges of the flow cell cartridge near the Illumina label. Make sure the label is facing upward and place the flow cell on the flow cell stage.

 Figure 37 Place Flow Cell on Stage

4. Gently press down on the flow cell latch to close it over the flow cell.
NOTE
As the flow cell latch is closed, two alignment pins near the hinge of the flow cell latch properly align and position the flow cell. An audible click indicates the flow cell latch is secure.

Figure 38 Close Flow Cell Latch

5 Check the lower-left corner of the screen to confirm that the flow cell RFID was successfully read.

NOTE
If the RFID is not read by the system, the software prompts you through the steps to obtain a temporary bypass code and proceed with setting up the run. For more information, see Resolving RFID Read Failure on page 95.

6 Close the flow cell compartment door.

7 Select **Next** on the Load Flow Cell screen. The Load Reagents screen opens.
Loading Reagents

There are two steps to loading reagents. First, load the PR2 bottle and make sure that the waste bottle is empty, and then load the reagent cartridge.

Load PR2 and Check the Waste Bottle

1 Remove the bottle of PR2 from 2° to 8°C storage. Gently invert the bottle to mix the PR2 bottle, and then remove the lid.
2 Open the reagent compartment door.
3 Raise the sipper handle until it locks into place.
4 Place the PR2 bottle in the indentation to the right of the reagent chiller.
 Figure 39 Load the PR2 Bottle

5 Make sure that the waste bottle is empty. If it is not empty, empty the contents into the appropriate waste container.
6 Slowly lower the sipper handle. Make sure that the sippers lower into the PR2 and waste bottles.
7 Check the lower-left corner of the screen to confirm that the RFID of the PR2 bottle was read successfully.

NOTE

If the RFID is not read by the system, the software prompts you through the steps to obtain a temporary bypass code and proceed with setting up the run. For more information, see *Resolving RFID Read Failure* on page 95.

8 Select **Next** on the Load Reagents screen.

Load the Reagent Cartridge

NOTE

Do not leave the reagent chiller door open for extended periods of time.

1 Open the reagent chiller door.

2 Hold the reagent cartridge on the end with the Illumina label, and slide the reagent cartridge into the reagent chiller until the cartridge stops.
3 Close the reagent chiller door.
4 Check the lower-left corner of the screen to confirm that the RFID of the reagent cartridge was read successfully.

NOTE
If the RFID is not read by the system, the software prompts you through the steps to obtain a temporary bypass code and proceed with setting up the run. For more information, see *Resolving RFID Read Failure* on page 95.
If the reagent cartridge is not compatible with the flow cell, a message appears. Select **Back** to load a compatible cartridge, or select **Exit** to return to the Welcome screen.

5 Close the reagent compartment door.
6 Select **Next** on the Load Reagents screen. The Review screen opens.
Starting the Run

After loading the flow cell and reagents, review the run parameters and perform a pre-run check before starting the run.

Review Run Parameters

1. Review Experiment Name, Analysis Workflow, and Read Length. These parameters are specified in the sample sheet.

2. Review the folder locations in the lower-left corner.
 If any changes are needed, select Change Folders. When the changes are complete, select Save, and then select Next.

3. Select Next. The Pre-Run Check screen opens.

Review Pre-Run Check

The system performs a check of all run components, disk space, and network connections before starting the run.

If any items do not pass the pre-run check, a message appears on the screen with instructions on how to correct the error. For more information, see Resolving Run Setup Errors on page 93.

When all items successfully pass the pre-run check, select Start Run.

Important Note Before Starting the Run

WARNING
The MiSeq is sensitive to vibration. Touching the instrument after starting a run could adversely impact sequencing results.

After selecting Start Run, do not open the flow cell compartment or the reagent compartment door, or touch the instrument monitor except to pause the run. For more information, see Pausing a Run on page 54.
Monitoring the Run

1. During the run, monitor run progress, intensities, and quality scores appear on the Sequencing screen. The Sequencing screen is view-only. For more information, see Sequencing Screen on page 45.

To monitor the run in greater detail, use the Sequencing Analysis Viewer (SAV) installed on another computer independent of the instrument computer. A network connection is required. For more information, see Sequencing Analysis Viewer on page 47. Alternatively, if you are connected to BaseSpace, you can monitor your run using SAV in BaseSpace.

2. When the run is complete, the Next button appears. Review the results on the Sequencing screen before proceeding.

 NOTE
 The Sequencing screen remains viewable until Next is selected. After Next is selected, it is not possible to return to the Sequencing screen.

3. Select **Next** to exit the Sequencing screen and proceed to a post-run wash.

Run Metrics

Run metrics appear on the Sequencing screen at different points in a run. During cluster generation steps, no metrics appear. After sequencing begins, the following metrics appear at the indicated cycles:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1–4</td>
<td>Intensity</td>
</tr>
<tr>
<td>Cycle 4–25</td>
<td>Intensity and Cluster Density</td>
</tr>
<tr>
<td>Cycle 25 through run completion</td>
<td>Intensity, Cluster Density, % PF, Yield, and Q-scores</td>
</tr>
</tbody>
</table>

For MiSeq run specifications, visit the MiSeq System specifications page on the Illumina website (www.illumina.com/systems/miseq/performance_specifications.ilmn).
Maintenance Procedures

Introduction ... 80
Performing a Post-Run Wash .. 81
Performing a Maintenance Wash ... 83
Performing a Standby Wash .. 86
Shutting Down the Instrument ... 89
Introduction

Always perform an instrument wash following the completion of a sequencing run. Regular instrument washes ensure continued performance in the following ways:
- Flushes any remaining reagents from the fluidics lines and sippers
- Prevents salt accumulation and crystallization in the fluidics lines and sippers
- Prevents cross-contamination from the previous run

Maintenance Frequency

Illumina recommends that you perform the following maintenance procedures at the intervals shown below.

Table 2 Maintenance During Normal Operation

<table>
<thead>
<tr>
<th>Activity</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Run Wash</td>
<td>After every run</td>
</tr>
<tr>
<td>Maintenance Wash</td>
<td>Monthly</td>
</tr>
<tr>
<td>Standby Wash</td>
<td>To prepare for idle mode (if unused for ≥7 days)</td>
</tr>
<tr>
<td>Instrument Shutdown</td>
<td>As needed</td>
</tr>
</tbody>
</table>

Table 3 Maintenance During Idle Mode (≥7 days unused)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Wash</td>
<td>Monthly</td>
</tr>
<tr>
<td>Instrument Shutdown</td>
<td>As needed</td>
</tr>
</tbody>
</table>
Performing a Post-Run Wash

Always perform an instrument wash after completing a sequencing run. Follow the software prompts to load the wash components and perform the wash. The post-run wash takes approximately 20 minutes.

Illumina recommends that you perform the wash directly following the completion of a run. If the wash is not performed at this time, you must perform a wash prior to the next run.

NOTE
Leave the used flow cell on the instrument. A flow cell must be loaded on the instrument to perform an instrument wash.

User-Supplied Consumables
- Tween 20 (Sigma-Aldrich, catalog # P7949)
- Laboratory-grade water

Procedure

1. Prepare fresh wash solution with Tween 20 and laboratory-grade water, as follows:
 a. Add 5 ml 100% Tween 20 to 45 ml laboratory-grade water. This results in 10% Tween 20.
 b. Add 25 ml 10% Tween 20 to 475 ml laboratory-grade water. This results in a 0.5% Tween 20 wash solution.
 c. Invert several times to mix.

2. Prepare the wash components with fresh wash solution, as follows:
 a. Add 6 ml wash solution to each reservoir of the wash tray.
 b. Add 350 ml wash solution to the 500 ml wash bottle.

3. When the run is complete, select **Start Wash**. The software automatically raises the sippers in the reagent chiller.

4. Open the reagent compartment door and reagent chiller door, and remove the used reagent cartridge from the chiller. The reagent cartridge should slide easily from the chiller.

5. Slide the wash tray into the reagent chiller until it stops, and then close the reagent chiller door.
6 Raise the sipper handle in front of the PR2 bottle and waste bottle until it locks into place.

7 Remove the PR2 bottle and replace it with the wash bottle.

 NOTE
 Discard the PR2 bottle after each run. Do not reuse any remaining PR2.

8 Remove the waste bottle and discard the contents appropriately. Return the waste bottle to the reagent compartment.

 WARNING
 This set of reagents contains formamide, an aliphatic amide that is a probable reproductive toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact.
 Dispose of containers and any unused contents in accordance with applicable local governmental safety standards.
 For more information, see the MSDS for this kit, at www.illumina.com/msds.

9 Slowly lower the sipper handle, making sure that the sippers lower into the wash bottle and waste bottle.

10 Close the reagent compartment door.

11 Select Next. The post-run wash begins.

 When the wash is complete, leave the used flow cell, wash tray, and wash bottle containing the remaining wash solution on the instrument.

 NOTE
 The sippers will remain in the down position. This is normal. Leave the unused wash solution in the wash tray and wash bottle to prevent the sippers from drying out and air from entering the system.
Performing a Maintenance Wash

Perform a maintenance wash every 30 days to ensure optimal performance. The maintenance performs a series of three wash steps using a wash solution of laboratory-grade water mixed with Tween 20. The maintenance wash takes approximately 90 minutes.

User-Supplied Consumables
- Tween 20 (Sigma-Aldrich, catalog # P7949)
- Laboratory-grade water

Procedure
1. Make sure that a used flow cell is loaded on the instrument.
2. From the Welcome screen, select Perform Wash.
3. From the Perform Wash screen, select Maintenance Wash. The software automatically raises the sippers in the reagent chiller.

Perform First Wash
1. Prepare fresh wash solution with Tween 20 and laboratory-grade water as follows:
 a. Add 5 ml 100% Tween 20 to 45 ml laboratory-grade water. This results in 10% Tween 20.
 b. Add 25 ml 10% Tween 20 to 475 ml laboratory-grade water. This results in a 0.5% Tween 20 wash solution.
 c. Invert several times to mix.
2. Prepare the wash components with fresh wash solution as follows:
 a. Add 6 ml wash solution to each reservoir of the wash tray.
 b. Add 350 ml wash solution to the 500 ml wash bottle.
3. Load the wash tray and wash bottle onto the instrument:
 a. Open the reagent compartment door and reagent chiller door, and remove the used reagent cartridge or wash tray from the previous run. The reagent cartridge should slide easily from the chiller.
b Slide the wash tray into the reagent chiller until it stops. Close the reagent chiller door.

c Raise the sipper handle in front of the PR2 bottle and waste bottle until it locks into place, and replace the PR2 bottle with the wash bottle.

NOTE

Discard the PR2 bottle after each run. Do not reuse any remaining PR2.

d Remove the waste bottle and discard the contents appropriately. Return the waste bottle to the reagent compartment.

e Slowly lower the sipper handle, making sure that the sippers lower into the wash bottle and waste bottle.

f Close the reagent compartment door.

4 Select **Next**. The first wash begins.

Perform Second Wash

NOTE

Always use fresh wash solution for each wash step. Reusing wash solution from the previous wash can return waste to the fluidics lines.

1 Prepare fresh wash solution with Tween 20 and laboratory-grade water, as follows:

a Add 5 ml 100% Tween 20 to 45 ml laboratory-grade water. This results in 10% Tween 20.

b Add 25 ml 10% Tween 20 to 475 ml laboratory-grade water. This results in a 0.5% Tween 20 wash solution.

c Invert several times to mix.

2 When the first wash is complete, remove the wash tray and wash bottle, and discard the remaining wash solution.

3 Refill the wash components with fresh wash solution, as follows:

a Add 6 ml wash solution to each reservoir of the wash tray.

b Add 350 ml wash solution to the 500 ml wash bottle.

4 Load the freshly-filled wash tray and wash bottle, as follows:

a Slide the wash tray into the reagent chiller until it stops. Close the reagent chiller door.

b Load the wash bottle and slowly lower the sipper handle, making sure that the sippers lower into the wash bottle and waste bottle.
Performing a Maintenance Wash

5 Select **Next**. The second wash begins.

Perform Final Wash

1 Prepare fresh wash solution with Tween 20 and laboratory-grade water, as follows:
 a Add 5 ml 100% Tween 20 to 45 ml laboratory-grade water. This results in 10% Tween 20.
 b Add 25 ml 10% Tween 20 to 475 ml laboratory-grade water. This results in a 0.5% Tween 20 wash solution.
 c Invert several times to mix.

2 When the second wash is complete, remove the wash tray and wash bottle, and discard the remaining wash solution.

3 Refill the wash components with fresh wash solution, as follows:
 a Add 6 ml wash solution to each reservoir of the wash tray.
 b Add 350 ml wash solution to the 500 ml wash bottle.

4 Load the freshly-filled wash tray and wash bottle, as follows:
 a Slide the wash tray into the reagent chiller until it stops. Close the reagent chiller door.
 b Load the wash bottle and slowly lower the sipper handle, making sure that the sippers lower into the wash bottle and waste bottle.
 c Close the reagent compartment door.

5 Select **Next**. The final wash begins.

After the Wash

When the wash is complete, leave the used flow cell, wash tray, and wash bottle containing the remaining wash solution on the instrument.

NOTE

The sippers will remain in the down position. This is normal. Leave the unused wash solution in the wash tray and wash bottle to prevent the sippers from drying out and air from entering the system.
Performing a Standby Wash

If the instrument will not be used within the next seven days, prepare the instrument to sit idle by performing a standby wash. A standby wash performs two consecutive washes that flush each position of any remaining reagents or salt accumulation. Each wash takes approximately 60 minutes. Allow approximately 2 hours to complete the standby wash.

When the standby wash is complete, the instrument is in standby mode and a message appears on the Welcome screen stating the status of the instrument. When the instrument is in standby mode, a maintenance wash must be performed before a sequencing run can be initiated.

NOTE
Illumina recommends repeating the standby wash every 30 days that the instrument remains idle.

User-Supplied Consumables
- Tween 20 (Sigma-Aldrich, catalog # P7949)
- Laboratory-grade water

Procedure

1. Make sure that a used flow cell is loaded on the instrument.
2. From the Welcome screen, select Perform Wash.
3. From the Wash Options screen, select Standby Wash. The software automatically raises the sippers in the reagent chiller.

Perform First Wash

1. Prepare fresh wash solution with Tween 20 and laboratory-grade water as follows:
 a. Add 5 ml 100% Tween 20 to 45 ml laboratory-grade water. This results in 10% Tween 20.
 b. Add 25 ml 10% Tween 20 to 475 ml laboratory-grade water. This results in a 0.5% Tween 20 wash solution.
 c. Invert several times to mix.
2. Prepare the wash components with fresh wash solution as follows:
 a. Add 6 ml wash solution to each reservoir of the wash tray.
Performing a Standby Wash

MiSeq System User Guide

87

b Add 350 ml wash solution to the 500 ml wash bottle.

3 Load the wash tray and wash bottle onto the instrument:
 a Open the reagent compartment door and reagent chiller door, and remove the used reagent cartridge or wash tray from the previous run. The reagent cartridge should slide easily from the chiller.
 b Slide the wash tray into the reagent chiller until it stops. Close the reagent chiller door.
 c Raise the sipper handle in front of the PR2 bottle and waste bottle until it locks into place, and replace the PR2 bottle with the wash bottle.

 NOTE
 Discard the PR2 bottle after each run. Do not reuse any remaining PR2.

 d Remove the waste bottle and discard the contents appropriately. Return the waste bottle to the reagent compartment.
 e Slowly lower the sipper handle, making sure that the sippers lower into the wash bottle and waste bottle.
 f Close the reagent compartment door.

4 Select **Next**. The first wash begins.

Perform Second Wash

NOTE
Always use fresh wash solution for each wash step. Reusing wash solution from the previous wash can return waste to the fluidics lines.

1 Prepare fresh wash solution with Tween 20 and laboratory-grade water, as follows:
 a Add 5 ml 100% Tween 20 to 45 ml laboratory-grade water. This results in 10% Tween 20.
 b Add 25 ml 10% Tween 20 to 475 ml laboratory-grade water. This results in a 0.5% Tween 20 wash solution.
 c Invert several times to mix.

2 When the first wash is complete, remove the wash tray and wash bottle, and discard the remaining wash solution.

3 Refill the wash components with fresh wash solution, as follows:
 a Add 6 ml wash solution to each reservoir of the wash tray.
 b Add 350 ml wash solution to the 500 ml wash bottle.
4 Load the freshly-filled wash tray and wash bottle, as follows:
 a Slide the wash tray into the reagent chiller until it stops. Close the reagent chiller door.
 b Load the wash bottle and slowly lower the sipper handle, making sure that the sippers lower into the wash bottle and waste bottle.
 c Close the reagent compartment door.

5 Select Next. The second wash begins.

After the Wash

When the wash is complete, leave the used flow cell, wash tray, and wash bottle containing the remaining wash solution on the instrument.

NOTE
The sippers will remain in the down position. This is normal. Leave the unused wash solution in the wash tray and wash bottle to prevent the sippers from drying out and air from entering the system.
Shutting Down the Instrument

It is best to leave the instrument on at all times. However, if the instrument must be turned off, use the following procedure to safely shut down Windows and prepare the fluidics lines.

1. Perform a maintenance wash to thoroughly wash the system. For more information, see Procedure on page 83.

2. Remove the waste bottle and discard the contents appropriately. Return the waste bottle to the reagent compartment.

3. Close the reagent compartment door.

4. From the Manage Instrument screen, select Shut Down. This command safely shuts down the software.

Figure 42 Manage Instrument Screen

5. Toggle the power switch to the OFF position.

NOTE
Any time that you turn off the instrument, wait a minimum of 60 seconds before turning the power switch back to the ON position.
Troubleshooting

Introduction ... 92
Resolving Run Setup Errors .. 93
Resolving RFID Read Failure .. 95
Troubleshooting Flow Rate Error ... 97
Performing a Volume Test ... 98
Measuring Expected Wash Volumes 101
Introduction

This section describes common troubleshooting steps to take before contacting Illumina Technical Support. For most errors, an on-screen message appears with instructions for correcting the error.

For technical questions, visit the MiSeq support pages on the Illumina website for access to frequently asked questions, or log in to your MyIllumina account for access to support bulletins.

For problems with run quality or performance, contact Illumina Technical Support. For more information, see Technical Assistance on page 107.

The Illumina Technical Support representative might ask for copies of run-specific files for troubleshooting purposes. The following files are located at the root level of the output run folder:

- SampleSheet.csv
- RunParameters.xml
- RunInfo.xml
- Interop folder
Resolving Run Setup Errors

If any checks in the pre-run check fail, a red icon ✗ appears next to the item to indicate the item is not ready, and a message appears on the screen that describes the error and the action needed to correct it.

<table>
<thead>
<tr>
<th>Error</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ Flow Rate Measured</td>
<td>The flow rate check screen opens. Use the drop-down list or on-screen keyboard to enter the following:</td>
</tr>
<tr>
<td></td>
<td>• Solution: PR2</td>
</tr>
<tr>
<td></td>
<td>• Volume: 250</td>
</tr>
<tr>
<td></td>
<td>• Aspirate Rate: 2500</td>
</tr>
<tr>
<td></td>
<td>• Dispense Rate: 2500</td>
</tr>
<tr>
<td></td>
<td>Select Pump. If the error persists, set the volume to pump 500 µl PR2 and repeat the process. When fluids have been pumped, select Restart Check.</td>
</tr>
<tr>
<td></td>
<td>When the pre-run check is successful, the Start Run button becomes active.</td>
</tr>
<tr>
<td></td>
<td>If the flow check fails again, reseat the flow cell to make sure that flow is not interrupted due to misalignment. Inspect the flow cell gasket for lint or irregularities that might prevent flow.</td>
</tr>
<tr>
<td>✗ Free Disk Space</td>
<td>If disk space is low, a message appears indicating how much disk space is required. Use the Manage Files feature to clear the required space from the instrument computer.</td>
</tr>
<tr>
<td>✗ Network Connection Active</td>
<td>Make sure the network cable is plugged into the instrument.</td>
</tr>
<tr>
<td></td>
<td>If the network connection is not restored, select Reboot on the Manage Instrument screen to reboot the software.</td>
</tr>
<tr>
<td></td>
<td>If the connection is still not restored, select Shut Down on the Manage Instrument screen, and then turn off the instrument using the power switch. Wait at least 60 seconds, and then turn on the instrument and start the software.</td>
</tr>
<tr>
<td>✗ Primary Analysis Ready</td>
<td>Primary analysis from the previous run is not complete. The default time to allow primary analysis to complete is 1 hour, and a countdown appears on the screen. The options are to wait 1 hour or select Terminate Analysis. Any incomplete cycles will not be available for secondary analysis.</td>
</tr>
<tr>
<td>Error</td>
<td>Action</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| ✗ Sample Sheet Present | If you did not name your sample sheet with the reagent cartridge ID for your run, the instrument cannot locate the appropriate sample sheet automatically. Browse to the sample sheet for your run.
If you named your sample sheet with the reagent cartridge ID for your run, make sure that the sample sheet is located in the default sample sheet folder. Check the default folder location in Run Options on the Welcome screen.
Make sure that the sample sheet file extension is *.csv.
If the sample sheet is missing, create one and copy it to the sample sheet locations specified in Run Options.
When you have located a sample sheet, select **Restart Check**. |
Resolving RFID Read Failure

In the event that the system cannot read the RFID of a consumable, you can obtain a temporary bypass code from the Illumina website. A temporary bypass code expires in seven days.

1. Always select **Retry** before proceeding. If the RFID failed a second time, select **Get Code**.

2. From a computer with internet access, go to https://my.illumina.com and log in to your MyIllumina account.

3. From the MyIllumina page, click **Account**. In the Resources column, click **MiSeq Self-Service**.

4. On the MiSeq Self-Service page, enter the **MiSeq serial number**.

5. From the Type of Override Code drop-down list, select **RFID Override**.

 ![MiSeq Self-Service Page](image)

6. To generate the code, select **Get Code**.

7. Return to the MCS interface and select **Enter Code**.

8. Enter the temporary bypass code using the on-screen keyboard, and then select **Next**.

9. Enter the barcode number of the flow cell, PR2 bottle, or reagent cartridge.
<table>
<thead>
<tr>
<th>Consumable</th>
<th>Barcode Number Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Cell</td>
<td>Above the barcode on the flow cell container label.</td>
</tr>
<tr>
<td></td>
<td>Flow cell barcode numbers begin with an A (standard), D (micro), or G (nano). Example: A0E61</td>
</tr>
<tr>
<td>PR2 Bottle</td>
<td>Below the barcode on the PR2 bottle label.</td>
</tr>
<tr>
<td></td>
<td>Example: MS0011881-PR2</td>
</tr>
<tr>
<td>Reagent Cartridge</td>
<td>Below the barcode on the reagent cartridge label.</td>
</tr>
<tr>
<td></td>
<td>Example: MS0010744-300</td>
</tr>
</tbody>
</table>

10 If you are entering a bypass code for the reagent cartridge, enter the version number of the kit: Version 1 or Version 2. Select **Enter Reagent Kit Barcode** to manually enter the reagent cartridge barcode number and kit version number.

CAUTION

Entering the incorrect reagent kit version can negatively impact sequencing data.

11 Select **Enter**.
Troubleshooting Flow Rate Error

The flow rate is the speed in which fluids pass through the fluidics system (µl/min). It is measured before each run during the pre-run check. If the system is unable to measure the flow rate, you are prompted to pump a volume of reagent (PR2) through the system before checking the flow rate again.

1. Use the drop-down list or on-screen keyboard to enter the following information:
 - Solution: PR2
 - Volume: 250 µl
 - Aspirate Rate: 2500 µl/min
 - Dispense Rate: 2500 µl/min

2. Select Pump.

 Figure 44 Measure Flow Rate

 ![Image of the user interface showing the pump screen with fields for solution, volume, aspirate rate, and dispense rate]

3. When the pump step is complete, select Restart Check.

4. If the error persists, set the volume to pump 500 µl PR2 and repeat the process one more time. Contact Illumina Technical Support if the second attempt does not resolve the error.
Performing a Volume Test

An obstruction in the fluidics lines might be the cause of poor reagent delivery or sequencing results. If an obstruction in the fluidics lines is suspected, perform a volume test.

A volume test checks the health of the fluidics system by estimating the volume between two bubbles as they pass by the sensors. To perform a volume test, the wash tray and wash bottle must be loaded with laboratory-grade water and a used flow cell must be in place. Follow the onscreen prompts to perform the test.

1. Make sure that a used flow cell is loaded on the instrument.
2. From the Manage Instrument screen, select **System Check**.
3. Select **Conduct Volume Test**, and then select **Next**.

![System Check Screen](image)

4. Fill each reservoir of the wash tray with 6 ml laboratory-grade water.
5. Fill the 500 ml wash bottle with 350 ml laboratory-grade water.
6. Load the wash tray and wash bottle onto the instrument.
 a. Open the reagent compartment door and reagent chiller door, and slide the wash tray into the reagent chiller until it stops. Close the reagent chiller door.
b Raise the sipper handle until it locks into place, and load the wash bottle.
c Remove the waste bottle and discard the contents appropriately. Return the waste bottle to the reagent compartment.
d Slowly lower the sipper handle, making sure that the sippers lower into the wash bottle and waste bottle.

7 Following the on-screen prompts, remove any droplets from the wash bottle sipper, as follows:
a When prompted, slowly raise the sipper handle and check the wash bottle sipper for the presence of a large water droplet.
b When prompted, slowly lower the sipper handle far enough into the water to allow the surface tension to remove the droplet.
c When prompted, slowly raise the sipper handle and check the wash bottle sipper for the presence of a large water droplet.
d When prompted, slowly lower the sipper handle completely, making sure that the sippers lower into the wash bottle and waste bottle.

Figure 46 Remove Droplet from Sipper

8 Select Next. The volume test begins.
When the volume test is complete, the results appear on the screen.
If the test did not pass, perform a maintenance wash. See Procedure on page 83.

9 When the maintenance wash is complete, repeat the volume test.
Measuring Expected Wash Volumes

Measuring expected wash volumes confirms that wash fluidics are performing efficiently.
1. Before beginning a wash, empty the waste bottle.
2. When the wash is complete, measure the wash volume in the waste bottle.

<table>
<thead>
<tr>
<th>Wash Type</th>
<th>Expected Wash Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Run Wash</td>
<td>17.25 ml</td>
</tr>
<tr>
<td>Standby Wash</td>
<td>46 ml</td>
</tr>
<tr>
<td>Maintenance Wash</td>
<td>17.25 ml</td>
</tr>
</tbody>
</table>
Index

A
activity indicators 23
analysis
during sequencing 58
options 56
analysis workflow
definition 21

B
base calls 45
BaseSpace
connection 23
credentials 35
run setup 68
screen 38

C
chastity filter 45
cluster density 45
cluster generation 63
components
flow cell 7
flow cell compartment 5-6
optics module 5
reagent cartridge 8
reagent compartment 5, 8
consumables
compatibility 15
Illumina-supplied 10
user-supplied 16
copying files and folders 28
customer support 107
cycles in a read 52

D
deleting files and folders 28
disk space
checking 53

low disk space 94
documentation 107
domain name 35

E
e-mail alerts 30

F
flow cell
cap color 14, 69
cleaning 69
letter designator 95
loading 38, 71
micro 14
nano 14
overview 7
single-lane 47
tile numbering 51
flow cell clamp 6
flow cell compartment 5-6
flow cell door sensor 23
flow rate, troubleshooting 97
fluidics
troubleshooting 97-98
washing 83, 86
folder locations
default settings 30
for current run 42

G
genome references 28

H
help, Live Help 59
help, technical 107
Index

I
icons
 activity indicators 23
 errors and warnings 23
 sensors 23
 status alert 23
idling the instrument 86
initialization 94
instrument setup 34
intensities 45
Interop folder 49
IP address 35

L
Live Help 59
loading flow cell 38
loading reagents 39
 cartridge 74
 PR2 73

M
maintenance wash 26, 83
manifest file
 copying to instrument 28
 definition 21
micro flow cell 14
MiSeq Reporter 2
 credentials 35
 overview 57
MiSeq Self-Service 95
monitoring the run 45, 77
moving files and folders 28

N
nano flow cell 14
network connection 94
network settings 35

O
optics module 5

P
password 18
password, changing 35
pausing a run 54
post-run wash 81
power switch 18
PR2, loading 73

Q
Q-scores 45

R
read length 52
reagent cartridge 8
reagent cartridge, contents 13
reagent chiller, temperature 23
reagent compartment 5, 8
reagents
 kitted 10
 loading 39, 73
Real Time Analysis 2
 results 50
 run folder 48
 template generation 46
rebooting software 34
recipes, managing 28
reference genome
 file format 21
RFID
 flow cell 71
 PR2 73
 reagent cartridge 74
 tracking 2
 troubleshooting 95
RTAcomplete.txt 50
run duration 52
run folder
 definition 21
run folders
 contents 48
 managing 28
 naming 48
 primary analysis files 50
 temp, output, analysis 48
run options 30
run setup screens 38
RunInfo.xml 49-50
runParameters.xml 49
S
sample sheet
 changing 41
 copying to instrument 28
 definition 21
 in run folder 50
 not found 94
secondary analysis 57
sensor indicators 23
sequencing 63
Sequencing Analysis Viewer 47, 77
sequencing screen 45, 77
shutting down the instrument 34, 89
sipper handle 8
software
 disk space checking 53
 initialization 18
 instrument setup 34
 on-instrument 20
 run duration 52
 updating 24, 37
standby wash 26, 86
status alert icon 23
status.xml 50
stopping a run 55
system account name 35
system settings 35
T
technical assistance 107
template generation 46-47
tile numbering 51
troubleshooting
 flow rate 97
 fluidics 98
 RFID 95
 run-specific files for 92
 run setup errors 94
turning on the instrument 18
U
updating software 24, 37
user-supplied consumables 16
user name 18
V
version compatibility 15
volume test 98
W
wash volumes 101
washes
 benefits of 80
 expected volumes 101
 maintenance 26, 83
 post-run 81
 post-run wash settings 30
 prepare to idle 86
 prepare to shut down 89
 standby 26, 86
waste bottle 8
welcome screen 22
Windows, minimize to 34
workflow 63
 run duration 52
Technical Assistance

For technical assistance, contact Illumina Technical Support.

Table 4 Illumina General Contact Information

<table>
<thead>
<tr>
<th>Region</th>
<th>Contact Number</th>
<th>Region</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illumina Website</td>
<td>www.illumina.com</td>
<td>Email</td>
<td>techsupport@illumina.com</td>
</tr>
</tbody>
</table>

Table 5 Illumina Customer Support Telephone Numbers

<table>
<thead>
<tr>
<th>Region</th>
<th>Contact Number</th>
<th>Region</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1.800.809.4566</td>
<td>Italy</td>
<td>800.874909</td>
</tr>
<tr>
<td>Austria</td>
<td>0800.296575</td>
<td>Netherlands</td>
<td>0800.0223859</td>
</tr>
<tr>
<td>Belgium</td>
<td>0800.81102</td>
<td>Norway</td>
<td>800.16836</td>
</tr>
<tr>
<td>Denmark</td>
<td>80882346</td>
<td>Spain</td>
<td>900.812168</td>
</tr>
<tr>
<td>Finland</td>
<td>0800.918363</td>
<td>Sweden</td>
<td>020790181</td>
</tr>
<tr>
<td>France</td>
<td>0800.911850</td>
<td>Switzerland</td>
<td>0800.563118</td>
</tr>
<tr>
<td>Germany</td>
<td>0800.180.8994</td>
<td>United Kingdom</td>
<td>0800.917.0041</td>
</tr>
<tr>
<td>Ireland</td>
<td>1.800.812949</td>
<td>Other countries</td>
<td>+44.1799.534000</td>
</tr>
</tbody>
</table>

MSDSs

Material safety data sheets (MSDSs) are available on the Illumina website at www.illumina.com/msds.

Product Documentation

Additional product documentation in PDF is available for download from the Illumina website. Go to www.illumina.com/support, select a product, then click Documentation & Literature.